Arrangements & the Varchenko-Gelfand Ring

Galen Dorpalen-Barry

joint with Nick Proudfoot, Jayden Wang, and Christian Stump

Texas A&M Algebraic Combinatorics Seminar August 26, 2022

Outline

1 Hyperplane Arrangements & Open, Convex Sets

2 A Ring from Regions (arXiv 2208.04855)

3 Special Case: Catalan Numbers (arXiv 2204.05829)

All vector spaces in this talk will be real!

All vector spaces in this talk will be real!

- A *hyperplane* is an affine linear subspace of codimension 1.
- A collection of finitely-many (distinct) hyperplanes is an *arrangement*.

All vector spaces in this talk will be real!

- A *hyperplane* is an affine linear subspace of codimension 1.
- A collection of finitely-many (distinct) hyperplanes is an *arrangement*.

Today we'll focus on

- regions (= open, connected components of the complement), and
- intersections (= nonempty intersections of some of the hyperplanes).

All vector spaces in this talk will be real!

- A *hyperplane* is an affine linear subspace of codimension 1.
- A collection of finitely-many (distinct) hyperplanes is an *arrangement*.

The following arrangement has 6 regions and the set of intersections is

 $\mathbb{R}^2,\ H_1,H_2,H_3,H_1\cap H_2\cap H_3$

Today we'll focus on

- regions (= open, connected components of the complement), and
- intersections (= nonempty intersections of some of the hyperplanes).

Poset of Intersections

- Let \mathcal{A} be an arrangement in $V \cong \mathbb{R}^d$ with intersections $\mathcal{L}(\mathcal{A})$.
 - The elements of $\mathcal{L}(\mathcal{A})$ form a poset under reverse inclusion.
 - A theorem of Zaslavsky relates the Möbius function values of lower intervals [V, X] ⊆ L(A) to the number of regions of the arrangement.

The poset of intersections is

Poset of Intersections

- Let \mathcal{A} be an arrangement in $V \cong \mathbb{R}^d$ with intersections $\mathcal{L}(\mathcal{A})$.
 - The elements of $\mathcal{L}(\mathcal{A})$ form a poset under reverse inclusion.
 - A theorem of Zaslavsky relates the Möbius function values of lower intervals [V, X] ⊆ L(A) to the number of regions of the arrangement.

The poset of intersections is

Zaslavsky's Theorem

Let \mathcal{A} be an arrangement with regions $\mathcal{R}(\mathcal{A})$ and intersections $\mathcal{L}(\mathcal{A})$.

Theorem (Zaslavsky)

$$\#\mathcal{R}(\mathcal{A}) = \sum_{X \in \mathcal{L}(\mathcal{A})} |\mu(V, X)|$$

Zaslavsky's Theorem

Let \mathcal{A} be an arrangement with regions $\mathcal{R}(\mathcal{A})$ and intersections $\mathcal{L}(\mathcal{A})$.

Theorem (Zaslavsky)

$$\#\mathcal{R}(\mathcal{A}) = \sum_{X \in \mathcal{L}(\mathcal{A})} |\mu(V, X)|$$

Note: Zaslavsky's theorem has two parts, depending on whether or not you include the absolute value signs.

Zaslavsky's Theorem

Theorem (Zaslavsky)

Let \mathcal{A} be an arrangement with regions $\mathcal{R}(\mathcal{A})$ and intersections $\mathcal{L}(\mathcal{A})$.

 $\#\mathcal{R}(\mathcal{A}) = \sum_{X \in \mathcal{L}(\mathcal{A})} |\mu(V, X)|$

Note: Zaslavsky's theorem has two parts, depending on whether or not you include the absolute value signs.

The Poincaré Polynomial

Let \mathcal{A} be an arrangement in \mathbb{R}^d with regions $\mathcal{R}(\mathcal{A})$ and intersections $\mathcal{L}(\mathcal{A})$. Define the **Poincaré polynomial** of \mathcal{A} by

$$\mathsf{Poin}(\mathcal{A},t) = \sum_{X \in \mathcal{L}(\mathcal{A})} |\mu(V,X)| t^{\mathsf{codim}(X)}.$$

Its coefficients are the Whitney numbers of the arrangement.

The Poincaré polynomial of this arrangement is $Poin(A, t) = 1 + 3t + 2t^2$.

Hyperplane Arrangements and Open, Convex Sets

Let V be a real vector space,

 ${\cal A}$ an arrangement, and

 $\mathcal{K} \subseteq V$ an open convex set.

Hyperplane Arrangements and Open, Convex Sets

Let V be a real vector space,

 ${\cal A}$ an arrangement, and

 $\mathcal{K} \subseteq V$ an open convex set.

We will study the combinatorics of the pair $(\mathcal{A}, \mathcal{K})$.

Hyperplane Arrangements and Open, Convex Sets

Let V be a real vector space,

 ${\mathcal A}$ an arrangement, and

 $\mathcal{K} \subseteq V$ an open convex set.

We will study the combinatorics of the pair $(\mathcal{A}, \mathcal{K})$.

Pairs $(\mathcal{A}, \mathcal{K})$ are interesting in the theory of arrangements, as they unify the theory of **central** and **affine** arrangements while generalizing both.

Regions and Intersections for a Pair

Let V be a real vector space, $\mathcal A$ an arrangement, and $\mathcal K\subseteq V$ an open convex set. Moreover let

 $\mathcal{R}(\mathcal{A})$ be the regions of \mathcal{A} and

 $\mathcal{L}(\mathcal{A})$ its intersections.

Regions and Intersections for a Pair

Let V be a real vector space, $\mathcal A$ an arrangement, and $\mathcal K\subseteq V$ an open convex set. Moreover let

 $\mathcal{R}(\mathcal{A})$ be the regions of \mathcal{A} and $\mathcal{L}(\mathcal{A})$ its intersections.

• The **regions** of the pair (A, K) are the regions of the arrangement which have nonempty intersection with K, i.e.

 $\mathcal{R}(\mathcal{A},\mathcal{K}) = \{ R \in \mathcal{R}(\mathcal{A}) \mid R \cap \mathcal{K} \neq \emptyset \}$

The intersections of C are the intersections X ∈ L(A) which cut through K, i.e.,

$$\mathcal{L}(\mathcal{A},\mathcal{K}) = \{ X \in \mathcal{L}(\mathcal{A}) \mid X \cap \mathcal{K} \neq \emptyset \}.$$

Zaslavsky's Theorem for Pairs

Let V be a real vector space, \mathcal{A} an arrangement, and $\mathcal{K} \subseteq V$ an open convex set. Moreover let

 $\mathcal{R}(\mathcal{A})$ be the regions of \mathcal{A} and

 $\mathcal{L}(\mathcal{A})$ its intersections.

Theorem (Zaslavsky)

$$\#\mathcal{R}(\mathcal{A},\mathcal{K}) = \sum_{X \in \mathcal{L}(\mathcal{A},\mathcal{K})} |\mu(V,X)|$$

Zaslavsky's theorem says: 1 + 1(1) = 2.

The Poincaré Polynomial of a Pair

Define the Poincaré polynomial of a pair $(\mathcal{A},\mathcal{K})$ in an arrangement by

$$\mathsf{Poin}(\mathcal{A},\mathcal{K};t) = \sum_{X \in \mathcal{L}(\mathcal{A},\mathcal{K})} |\mu(V,X)| t^{\mathsf{codim}(X)}.$$

Its coefficients are the Whitney numbers of the pair.

The Poincaré polynomial of this pair is $Poin(\mathcal{A}, \mathcal{K}; t) = 1 + 1t$.

Example

Below is an example of a pair, together with its intersection poset

Example

Below is an example of a pair, together with its intersection poset

The Poincaré polynomial of this pair is $Poin(\mathcal{C}, t) = 1 + 3t + t^2$.

The Varchenko-Gelfand Ring

The Varchenko-Gelfand Ring

based on joint work with Nick Proudfoot and Jayden Wang arXiv 2208.04855

A Ring from Regions

Definition

The Varchenko-Gelfand ring of \mathcal{A} is the set of maps $f : \mathcal{R}(\mathcal{A}) \to \mathbb{Z}$ with pointwise addition and multiplication.

A Ring from Regions

Definition

The Varchenko-Gelfand ring of \mathcal{A} is the set of maps $f : \mathcal{R}(\mathcal{A}) \to \mathbb{Z}$ with pointwise addition and multiplication.

Choose a set of normal vectors such that n_H is the normal vector to $H \in A$. Define a *Heaviside function*

$$x_H(v) = egin{cases} 1 & ext{if } \langle v, n_H
angle > 0 \ 0 & ext{else.} \end{cases}$$

Choose a set of normal vectors such that n_H is the normal vector to $H \in A$. Define a *Heaviside function*

$$x_H(v) = egin{cases} 1 & ext{if } \langle v, n_H
angle > 0 \ 0 & ext{else.} \end{cases}$$

We can define this instead on regions, by choosing a representative point $v \in R$ for each region and defining $x_H(R) = x_H(v)$.

Lemma

Together with 1, these Heaviside functions generate the Varchenko-Gelfand ring as a \mathbb{Z} -algebra.

Let's write out the following element as a polynomial in these Heaviside functions.

Lemma

Together with 1, these Heaviside functions generate the Varchenko-Gelfand ring as a \mathbb{Z} -algebra.

Let's write out the following element as a polynomial in these Heaviside functions.

$$x_1 x_3 (1-x_2) = \frac{\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}}{\begin{array}{c} 0 & 0 & 1 \end{array}}$$

A Filtration by Degree

Let \mathcal{A} be an arrangement of hyperplanes in \mathbb{R}^d .

- We just saw that the Varchenko-Gelfand ring is generated by Heaviside functions defined by the hyperplanes of A.
- It also has a filtration $\mathcal{F}: F_0 \subseteq F_1 \subseteq \cdots$ by degree, i.e., the collection of additive groups

$$F_0 = \mathbb{Z} - \operatorname{span}\{1\}$$

$$F_1 = \mathbb{Z} - \operatorname{span}\{1\} \cup \{x_H \mid H \in \mathcal{A}\}$$

$$\vdots$$

$$F_i = \mathbb{Z} - \operatorname{span}\{\operatorname{monomials} \text{ of degree } \leq i\}$$

• The associated graded ring is $\mathcal{V}(\mathcal{A}) = \bigoplus_{i \ge 0} F_i / F_{i-1}$.

Two Classical Results

Theorem (Varchenko-Gelfand)

Each graded component F_i/F_{i-1} of $\mathcal{V}(\mathcal{A})$ is a free \mathbb{Z} -module with \mathbb{Z} -basis indexed by the no broken circuit sets of the arrangement.

Theorem (Rota) For $X \in \mathcal{L}(\mathcal{A})$, we have

 $|\mu(\mathbb{R}^d, X)| = \#\{\text{no broken circuit sets whose join is } X\}.$

Two Classical Results

Theorem (Varchenko-Gelfand)

Each graded component F_i/F_{i-1} of $\mathcal{V}(\mathcal{A})$ is a free \mathbb{Z} -module with \mathbb{Z} -basis indexed by the no broken circuit sets of the arrangement.

Theorem (Rota) For $X \in \mathcal{L}(\mathcal{A})$, we have

 $|\mu(\mathbb{R}^d, X)| = \#\{\text{no broken circuit sets whose join is } X\}.$

Combining these theorems gives

$$Hilb(\mathcal{V}(\mathcal{A}), t) = Poin(\mathcal{A}, t).$$

Two Classical Results

Theorem (Varchenko-Gelfand)

Each graded component F_i/F_{i-1} of $\mathcal{V}(\mathcal{A})$ is a free \mathbb{Z} -module with \mathbb{Z} -basis indexed by the no broken circuit sets of the arrangement.

Theorem (Rota) For $X \in \mathcal{L}(\mathcal{A})$, we have

 $|\mu(\mathbb{R}^d, X)| = \#\{\text{no broken circuit sets whose join is } X\}.$

Combining these theorems gives

 $Hilb(\mathcal{V}(\mathcal{A}), t) = Poin(\mathcal{A}, t).$

Gelfand-Rybnikov extended Varchenko-Gelfand's work to *oriented matroids*. Rota's theorem still holds in that setting, and the Hilbert series is the Poincaré polynomial of the oriented matroid.

Example

Consider the arrangement in \mathbb{R}^2 with normal vectors $v_1 = (1, -1), v_2 = (0, 1)$, and $v_3 = (1, 1)$ (drawn below, left).

- Signed circuits: + + -, - +
- Unsigned circuit: $\{1, 2, 3\}$
- \bullet No broken circuit sets: $\emptyset,\ 1,\ 2,\ 3,\ 12,\ 13$

Example

Consider the arrangement in \mathbb{R}^2 with normal vectors $v_1 = (1, -1), v_2 = (0, 1)$, and $v_3 = (1, 1)$ (drawn below, left).

- Signed circuits: + + -, - +
- Unsigned circuit: {1,2,3}
 - \bullet No broken circuit sets: $\emptyset,\ 1,\ 2,\ 3,\ 12,\ 13$

Varchenko-Gelfand showed that

$$\mathcal{V}(\mathcal{A}) \cong \mathbb{Z} \cdot \{1\} \oplus \mathbb{Z} \cdot \{x_1, \ x_2, \ x_3\} \oplus \mathbb{Z} \cdot \{x_1x_2, \ x_1x_3\}$$

where $\mathbb{Z} \cdot \{-\}$ denotes the $\mathbb{Z}\text{-span}$ of -. Then the Hilbert series is

$$\mathsf{Hilb}(\mathcal{V}(\mathcal{A}),t) = 1 + 3t + 2t^2$$

which matches the Poincaré polynomial we computed earlier.

Varchenko-Gelfand Ring of a Pair

Definition

The Varchenko–Gelfand ring of a pair $(\mathcal{A}, \mathcal{K})$ is the set of maps $f : \mathcal{R}(\mathcal{A}, \mathcal{K}) \to \mathbb{Z}$ with pointwise addition and multiplication.

As in the original setting, this ring is generated by Heaviside functions and admits a Heaviside filtration.
Varchenko-Gelfand Ring of a Pair

Definition

The Varchenko–Gelfand ring of a pair $(\mathcal{A}, \mathcal{K})$ is the set of maps $f : \mathcal{R}(\mathcal{A}, \mathcal{K}) \to \mathbb{Z}$ with pointwise addition and multiplication.

As in the original setting, this ring is generated by Heaviside functions and admits a Heaviside filtration.

Theorem ((DB)PW, 2022)

Let *E* be the set of hyperplanes that cut through \mathcal{K} and $R := \mathbb{Z}[e_i \mid i \in E]$, we have isomorphisms

$$GR(\mathcal{A},\mathcal{K}) \cong R / I_{(\mathcal{A},\mathcal{K})}$$

gr GR(\mathcal{A},\mathcal{K}) $\cong R / J_{(\mathcal{A},\mathcal{K})}$

where the three quotienting ideals depend only on the **conditional** oriented matroid of the pair.

Galen Dorpalen-Barry (RUB)

What is a conditional oriented matroid?

The short version:

- The combinatorics of a hyperplane arrangement \mathcal{A} is captured by an **oriented matroid**.
- The combinatorics of a pair $(\mathcal{A}, \mathcal{K})$ is captured by a conditional oriented matroid.

What is a conditional oriented matroid?

The short version:

- The combinatorics of a hyperplane arrangement \mathcal{A} is captured by an **oriented matroid**.
- The combinatorics of a pair $(\mathcal{A}, \mathcal{K})$ is captured by a conditional oriented matroid.

What is a conditional oriented matroid?

The short version:

- The combinatorics of a hyperplane arrangement \mathcal{A} is captured by an **oriented matroid**.
- The combinatorics of a pair $(\mathcal{A}, \mathcal{K})$ is captured by a conditional oriented matroid.

To make this precise, we need a few vocabulary items...

Signed Sets

Let E be a finite set. Recall,

- A signed set is an ordered pair $X = (X^+, X^-)$ of disjoint subsets.
- The support of $X = (X^+, X^-)$ is $\underline{X} := X^+ \cup X^-$.

Signed Sets

Let E be a finite set. Recall,

- A signed set is an ordered pair $X = (X^+, X^-)$ of disjoint subsets.
- The support of $X = (X^+, X^-)$ is $\underline{X} := X^+ \cup X^-$.
- The **separating set** of signed sets *X*, *Y* is the set of coordinates in the intersection of the supports at which *X* and *Y* differ, i.e.,

$$Sep(X, Y) := \{i \in E \mid X_i = -Y_i \neq 0\}.$$

Signed Sets

Let E be a finite set. Recall,

- A signed set is an ordered pair $X = (X^+, X^-)$ of disjoint subsets.
- The support of $X = (X^+, X^-)$ is $\underline{X} := X^+ \cup X^-$.
- The **separating set** of signed sets *X*, *Y* is the set of coordinates in the intersection of the supports at which *X* and *Y* differ, i.e.,

$$Sep(X, Y) := \{i \in E \mid X_i = -Y_i \neq 0\}.$$

• The composition $X \circ Y$ of two signed sets is a signed set defined by

$$(X \circ Y)_i := egin{cases} X_i & ext{if } X_i
eq 0 \ Y_i & ext{otherwise} \end{cases} \quad ext{for all } i \in E.$$

where $X_i = +$ if $i \in X^+$, $X_i = -$ if $i \in X^-$ and $X_i = 0$ otherwise.

Let E be a finite set.

Definition

A **conditional oriented matroid** on the ground set *E* is a collection \mathcal{L} of signed sets, called **covectors**, satisfying both of the following two conditions:

• If
$$X, Y \in \mathcal{L}$$
, then $X \circ -Y \in \mathcal{L}$.

• If $X, Y \in \mathcal{L}$ and $i \in \text{Sep}(X, Y)$, then there exists $Z \in \mathcal{L}$ with $Z_i = 0$ and $Z_j = (X \circ Y)_j$ for all $j \in E \setminus \text{Sep}(X, Y)$.

Let E be a finite set.

Definition

A **conditional oriented matroid** on the ground set *E* is a collection \mathcal{L} of signed sets, called **covectors**, satisfying both of the following two conditions:

• If
$$X, Y \in \mathcal{L}$$
, then $X \circ -Y \in \mathcal{L}$.

• If $X, Y \in \mathcal{L}$ and $i \in \text{Sep}(X, Y)$, then there exists $Z \in \mathcal{L}$ with $Z_i = 0$ and $Z_j = (X \circ Y)_j$ for all $j \in E \setminus \text{Sep}(X, Y)$.

1st axiom says: \mathcal{K} is open 2nd axiom says: \mathcal{K} is convex

Let E be a finite set.

Definition

A **conditional oriented matroid** on the ground set *E* is a collection \mathcal{L} of signed sets, called **covectors**, satisfying both of the following two conditions:

• If
$$X, Y \in \mathcal{L}$$
, then $X \circ -Y \in \mathcal{L}$.

• If $X, Y \in \mathcal{L}$ and $i \in \text{Sep}(X, Y)$, then there exists $Z \in \mathcal{L}$ with $Z_i = 0$ and $Z_j = (X \circ Y)_j$ for all $j \in E \setminus \text{Sep}(X, Y)$.

1st axiom says: \mathcal{K} is open 2nd axiom says: \mathcal{K} is convex

Question. What is the analogue of the Varchenko–Gelfand ring for a COM?

Let E be a finite set.

Definition

A **conditional oriented matroid** on the ground set *E* is a collection \mathcal{L} of signed sets, called **covectors**, satisfying both of the following two conditions:

• If
$$X, Y \in \mathcal{L}$$
, then $X \circ -Y \in \mathcal{L}$.

• If $X, Y \in \mathcal{L}$ and $i \in \text{Sep}(X, Y)$, then there exists $Z \in \mathcal{L}$ with $Z_i = 0$ and $Z_j = (X \circ Y)_j$ for all $j \in E \setminus \text{Sep}(X, Y)$.

1st axiom says: \mathcal{K} is open 2nd axiom says: \mathcal{K} is convex

Question. What is the analogue of the Gelfand-Rybnikov ring for a COM?

Let E be a finite set.

Definition

A **conditional oriented matroid** on the ground set *E* is a collection \mathcal{L} of signed sets, called **covectors**, satisfying both of the following two conditions:

• If
$$X, Y \in \mathcal{L}$$
, then $X \circ -Y \in \mathcal{L}$.

• If $X, Y \in \mathcal{L}$ and $i \in \text{Sep}(X, Y)$, then there exists $Z \in \mathcal{L}$ with $Z_i = 0$ and $Z_j = (X \circ Y)_j$ for all $j \in E \setminus \text{Sep}(X, Y)$.

Question. What is the analogue of the Gelfand-Rybnikov ring for a COM?

Let E be a finite set.

Definition

A **conditional oriented matroid** on the ground set *E* is a collection \mathcal{L} of signed sets, called **covectors**, satisfying both of the following two conditions:

• If
$$X, Y \in \mathcal{L}$$
, then $X \circ -Y \in \mathcal{L}$.

• If $X, Y \in \mathcal{L}$ and $i \in \text{Sep}(X, Y)$, then there exists $Z \in \mathcal{L}$ with $Z_i = 0$ and $Z_j = (X \circ Y)_j$ for all $j \in E \setminus \text{Sep}(X, Y)$.

Question. What is the analogue of the Gelfand-Rybnikov ring for a COM?

Now replace chambers with **topes** which are signed sets $X \in \mathcal{L}$ whose support is the whole ground set.

Gelfand-Rybnikov Ring

Let ${\mathcal L}$ be a conditional oriented matroid.

Definition

The **Gelfand-Rybnikov** ring of \mathcal{L} is the set of maps

```
f: \{ \text{topes of } \mathcal{L} \} \to \mathbb{Z}
```

with pointwise addition and multiplication.

Gelfand-Rybnikov Ring

Let ${\mathcal L}$ be a conditional oriented matroid.

Definition

The **Gelfand-Rybnikov** ring of \mathcal{L} is the set of maps

 $f: \{ \text{topes of } \mathcal{L} \} \to \mathbb{Z}$

with pointwise addition and multiplication.

Theorem ((DB)PW, 2022) For $R := \mathbb{Z}[e_i \mid i \in E]$, we have $GR(\mathcal{L}) \cong R / I_{\mathcal{L}}$ and $gr GR(\mathcal{L}) \cong R / J_{\mathcal{L}}$.

where these ideals come from the set of signed sets X such that

 $X \circ Y \notin \mathcal{L}$ for all $Y \in \mathcal{L}$.

Special Case: Catalan Numbers

Special Case: Catalan Numbers based on joint work with Christian Stump arXiv 2204.05829

What is the Shi arrangement?

Let $\Delta \subseteq \Phi^+ \subseteq \Phi$ be an irreducible crystallographic root system with a choice of positive and simple roots.

What is the Shi arrangement?

Let $\Delta \subseteq \Phi^+ \subseteq \Phi$ be an irreducible crystallographic root system with a choice of positive and simple roots.

The **Shi arrangement** of associated to Φ^+ has hyperplanes

$$H_{\beta,k} = \{x \in \mathbb{R}^n \mid \langle \beta, x \rangle = k\}$$

for $\beta \in \Phi^+$ and k = 0, 1.

What is the Shi arrangement?

Let $\Delta \subseteq \Phi^+ \subseteq \Phi$ be an irreducible crystallographic root system with a choice of positive and simple roots.

The **Shi** arrangement of associated to Φ^+ has hyperplanes

$$H_{\beta,k} = \{ x \in \mathbb{R}^n \mid \langle \beta, x \rangle = k \}$$

for $\beta \in \Phi^+$ and k = 0, 1.

Example

The (Type A) **Shi arrangement** $Shi(\Phi^+)$ has hyperplanes

$$H_{i,j,k} = \{x \in \mathbb{R}^n \mid x_i - x_j = k\}$$

for $i < j \in [n] := \{1, 2, \dots, n\}$ and k = 0, 1.

Every Shi arrangement has a **reflection subarrangement** with hyperplanes

$$H_{\beta,0} = \{x \in \mathbb{R}^n \mid \langle \beta, x \rangle = 0\}$$

for $\beta \in \Phi^+$.

Every Shi arrangement has a **reflection subarrangement** with hyperplanes

$$H_{\beta,0} = \{ x \in \mathbb{R}^n \mid \langle \beta, x \rangle = 0 \}$$

for $\beta \in \Phi^+$.

On the right, we show the Type A and Type B Shi arrangements (in rank 2). The hyperplanes of the reflection subarrangement are **bolded**.

Every chamber of the reflection subarrangement defines a **Weyl cone** of the Shi arrangement.

Every chamber of the reflection subarrangement defines a **Weyl cone** of the Shi arrangement.

Fact

The Weyl cones of $Shi(\Phi^+)$ are in bijection with the elements of the corresponding Weyl group W.

The region associated with the identity of W is sometimes called the **dominant cone**.

Every chamber of the reflection subarrangement defines a **Weyl cone** of the Shi arrangement.

Fact

The Weyl cones of $Shi(\Phi^+)$ are in bijection with the elements of the corresponding Weyl group W.

The region associated with the identity of W is sometimes called the **dominant cone**.

On the right, we draw the A_2 Shi arrangement, and shade the dominant cone (= Weyl cone associated to $123 \in \mathfrak{S}_n$).

Regions of Weyl Cones

The **root poset** is the poset on Φ^+ with order relations $\beta \prec \gamma$ if $\gamma - \beta$ is a nonnegative linear combination of simple roots.

Regions of Weyl Cones

The **root poset** is the poset on Φ^+ with order relations $\beta \prec \gamma$ if $\gamma - \beta$ is a nonnegative linear combination of simple roots.

Theorem (Shi/Athanasiadis)

The regions of the dominant cone are in bijection with antichains of the root poset.

Regions of Weyl Cones

The **root poset** is the poset on Φ^+ with order relations $\beta \prec \gamma$ if $\gamma - \beta$ is a nonnegative linear combination of simple roots.

Theorem (Shi/Athanasiadis)

The regions of the dominant cone are in bijection with antichains of the root poset.

Theorem (Armstrong-Reiner-Rhoades)

For $w \in W$, the regions of the Weyl cone are in bijection with antichains of

$$\Phi^+ \setminus inv(w^{-1})$$

where $inv(w^{-1})$ is the inversion set of w^{-1} .

Theorem ((DB)S 2022)

The intersection poset of wC is the set of antichains of $\Phi^+ \setminus inv(w^{-1})$ ordered by inclusion.

Theorem ((DB)S 2022)

The intersection poset of wC is the set of antichains of $\Phi^+ \setminus inv(w^{-1})$ ordered by inclusion.

If e is the identity element of W, theorem theorem says

$$\mathsf{Poin}(e\mathsf{C},t) = \sum_{\substack{\mathsf{anitchains}\ A\subseteq \Phi^+}} t^{\#A}.$$

Theorem ((DB)S 2022)

The intersection poset of wC is the set of antichains of $\Phi^+ \setminus inv(w^{-1})$ ordered by inclusion.

If e is the identity element of W, theorem theorem says

$$\mathsf{Poin}(eC,t) = \sum_{\substack{\mathsf{anitchains}\\ \mathcal{A} \subset \Phi^+}} t^{\#\mathcal{A}}.$$

Recall that the W-Narayana numbers

$$N(\Phi^+, k) = \# \left\{ egin{antichains of } \Phi^+ \\ ext{of cardinality } k \end{array}
ight\}$$

Theorem ((DB)S 2022)

The intersection poset of wC is the set of antichains of $\Phi^+\setminus inv(w^{-1})$ ordered by inclusion.

If e is the identity element of W, theorem theorem says

$$\mathsf{Poin}(eC,t) = \sum_{\substack{\mathsf{anitchains}\\ A \subset \Phi^+}} t^{\#A}.$$

Recall that the W-Narayana numbers

$$N(\Phi^+, k) = \# \left\{ \begin{array}{l} \text{antichains of } \Phi^+ \\ \text{of cardinality } k \end{array} \right\}$$

refine the W-Catalan numbers

$$C(\Phi^+) = \# \{ \text{antichains of } \Phi^+ \}$$

Theorem ((DB)S 2022)

The intersection poset of wC is the set of antichains of $\Phi^+ \setminus inv(w^{-1})$ ordered by inclusion.

Theorem ((DB)S 2022)

The intersection poset of wC is the set of antichains of $\Phi^+ \setminus inv(w^{-1})$ ordered by inclusion.

Some comments on the proof:

• This theorem has an elementary/geometric proof.

Theorem ((DB)S 2022)

The intersection poset of wC is the set of antichains of $\Phi^+ \setminus inv(w^{-1})$ ordered by inclusion.

Some comments on the proof:

- This theorem has an elementary/geometric proof.
- The interpretation of the Poincaré polynomial has a second proof via commutative algebra.

Theorem ((DB)S 2022)

The intersection poset of wC is the set of antichains of $\Phi^+ \setminus inv(w^{-1})$ ordered by inclusion.

Some comments on the proof:

- This theorem has an elementary/geometric proof.
- The interpretation of the Poincaré polynomial has a second proof via commutative algebra.

In the remainder of this talk, I want to tell you a bit about the algebraic proof.
Back to the Varchenko–Gelfand Ring

Another Presentation

Let $\Delta \subset \Phi^+ \subset \Phi$ be an irreducible crystallographic root system with choice of simple and positive roots.

Theorem (Chapoton)

When C is the domiant cone of Shi(Φ^+), there exists an ideal $I_{\Phi^+} \subseteq \mathbb{Z}[e_H \mid H \in \mathcal{A}]$ such that

$$VG(\mathcal{C}) \cong \mathbb{Z}[e_H \mid H \in \mathcal{A}]/I_{\Phi^+}$$

 $\mathfrak{gr}VG(\mathcal{C}) \cong \mathbb{Z}[e_H \mid H \in \mathcal{A}]/(in_{deg}I_{\Phi^+})$

In particular, both have bases indexed by antichains and

$$\mathsf{Hilb}(\mathfrak{gr}VG(wC);t) = \sum_{\substack{\mathsf{anitchains}\\ A \subseteq \Phi^+}} t^{\#A}.$$

Once you know what to look for, Chapoton's argument has the following easy extension to all Weyl cones.

Another Presentation

Let $\Delta \subset \Phi^+ \subset \Phi$ be an irreducible crystallographic root system with choice of simple and positive roots.

Theorem (Chapoton + Armstrong-Reiner-Rhoades)

Let W be the Weyl group associated to Φ^+ and $w \in W$. Then there exists an ideal $I_{\Phi^+,w} \subseteq \mathbb{Z}[e_H \mid H \in \mathcal{A}]$ such that

$$VG(\mathcal{C}) \cong \mathbb{Z}[e_{H} \mid H \in \mathcal{A}]/I_{\Phi^{+},w}$$
$$\mathfrak{gr}VG(\mathcal{C}) \cong \mathbb{Z}[e_{H} \mid H \in \mathcal{A}]/(in_{\deg}I_{\Phi^{+},w})$$

In particular, both have bases indexed by antichains and

$$\mathsf{Hilb}(\mathfrak{gr} \mathsf{VG}(\mathsf{wC}); t) = \sum_{\substack{\mathsf{anitchains}\\ A \subseteq \Phi^+ \setminus \mathsf{inv}(\mathsf{w}^{-1})}} t^{\#A}$$

This extends to Shi deletions as well.

Another Presentation

Let $\Delta \subset \Phi^+ \subset \Phi$ be an irreducible crystallographic root system with choice of simple and positive roots.

Theorem (Chapoton + Armstrong-Reiner-Rhoades)

Let W be the Weyl group associated to Φ^+ and $w \in W$. Then there exists an ideal $I_{\Phi^+,w} \subseteq \mathbb{Z}[e_H \mid H \in \mathcal{A}]$ such that

$$VG(\mathcal{C}) \cong \mathbb{Z}[e_{H} \mid H \in \mathcal{A}]/I_{\Phi^{+},w}$$
$$\mathfrak{gr}VG(\mathcal{C}) \cong \mathbb{Z}[e_{H} \mid H \in \mathcal{A}]/(in_{\deg}I_{\Phi^{+},w})$$

In particular, both have bases indexed by antichains and

$$\mathsf{Hilb}(\mathfrak{gr} \mathcal{VG}(w\mathcal{C}); t) = \sum_{\substack{\mathsf{anitchains}\\ A \subseteq \Phi^+ \setminus \mathsf{inv}(w^{-1})}} t^{\#A}$$

This extends to Shi deletions as well. But how to get to the Poincaré polynomial?

Galen Dorpalen-Barry (RUB)

A General Presentation

Let $(\mathcal{A}, \mathcal{K})$ be a pair with regions $\mathcal{R}(\mathcal{A}, \mathcal{K})$. The following is a special case of the theorem from (DB)PW earlier.

Theorem (DB, 21)

For convex sets defined by intersections of halfspaces, one obtains a simpler set of generators $\mathcal{G} \subseteq \mathbb{Z}[e_H \mid H \in \mathcal{A}]$ such that for any "compatible" monomial order

 $\mathsf{GR}(\mathcal{A},\mathcal{K}) \cong \mathbb{Z}[e_H \mid H \in \mathcal{A}]/(\mathcal{G}) \\ \mathsf{gr}\,\mathsf{GR}(\mathcal{A},\mathcal{K}) \cong \mathbb{Z}[e_H \mid H \in \mathcal{A}]/(\mathit{in}_{\mathsf{deg}}\mathcal{G})$

In particular, the Hilbert series is

$$\mathsf{Hilb}(\mathsf{gr}\,\mathsf{GR}(\mathcal{A},\mathcal{K});t)=\mathsf{Poin}((\mathcal{A},\mathcal{K}),t).$$

The $\mathcal{K} = V$ case was first proved by Varchenko and Gelfand.

Combining these Results

Let $\Delta \subset \Phi^+ \subset \Phi$ be an irreducible crystallographic root system with choice of simple and positive roots. Let W be the Weyl group associated to Φ^+ and $w \in W$ and $w \in W$.

$$\mathsf{Poin}(wC, t) = \mathsf{Hilb}(\mathfrak{gt}VG(wC); t) = \sum_{\substack{\mathsf{anitchains}\\A \subseteq \Phi^+ \setminus inv(w^{-1})}} t^{\#A}$$

Combining these Results

Let $\Delta \subset \Phi^+ \subset \Phi$ be an irreducible crystallographic root system with choice of simple and positive roots. Let W be the Weyl group associated to Φ^+ and $w \in W$ and $w \in W$.

$$\mathsf{Poin}(wC, t) = \mathsf{Hilb}(\mathfrak{gr} VG(wC); t) = \sum_{\substack{\mathsf{anitchains}\\A \subseteq \Phi^+ \setminus inv(w^{-1})}} t^{\#A}$$

This extends to Shi deletions as well.

Combining these Results

Let $\Delta \subset \Phi^+ \subset \Phi$ be an irreducible crystallographic root system with choice of simple and positive roots. Let W be the Weyl group associated to Φ^+ and $w \in W$ and $w \in W$.

$$\mathsf{Poin}(wC, t) = \mathsf{Hilb}(\mathfrak{gr} VG(wC); t) = \sum_{\substack{\mathsf{anitchains}\\A \subseteq \Phi^+ \setminus inv(w^{-1})}} t^{\#A}$$

This extends to Shi deletions as well.

Let's look back at the dominant cone for Type A...

Back to Narayna Numbers I

$$\mathsf{Poin}(\sigma C, t) = \sum_{\substack{\mathsf{anitchains}\\ A \subseteq \Phi^+ \setminus inv(w^{-1})}} t^{\#A}.$$

Back to Narayna Numbers I

On the previous slide, we saw that

$$\mathsf{Poin}(\sigma C, t) = \sum_{\substack{\mathsf{anitchains}\\ A \subseteq \Phi^+ \setminus inv(w^{-1})}} t^{\# A}$$

If w is the identity element of W

$$\begin{aligned} \mathsf{Poin}(\sigma C, t) &= \sum_{\substack{\mathsf{anitchains} \\ A \subseteq \Phi^+}} t^{\#A} \\ &= \sum_{k \ge 0} \# \left\{ \substack{\mathsf{antichains of} \\ \mathsf{cardinality } k} \right\} t^k. \end{aligned}$$

Back to Narayna Numbers I

On the previous slide, we saw that

$$\mathsf{Poin}(\sigma C, t) = \sum_{\substack{\mathsf{anitchains}\\ A \subseteq \Phi^+ \setminus inv(w^{-1})}} t^{\# A}$$

If w is the identity element of W

$$\begin{aligned} \mathsf{Poin}(\sigma C, t) &= \sum_{\substack{\mathsf{anitchains} \\ A \subseteq \Phi^+}} t^{\#A} \\ &= \sum_{k \ge 0} \# \left\{ \begin{matrix} \mathsf{antichains of} \\ \mathsf{cardinality } k \end{matrix} \right\} t^k. \end{aligned}$$

These are precisely the W-Narayana numbers.

Back to Narayna Numbers II

When $W = \mathfrak{S}_n$ is the symmetric group

$$egin{aligned} \mathcal{N}(n,k) =& rac{1}{n} inom{n}{k} inom{n}{k-1} \ =& \# \left\{ egin{aligned} & ext{antichains of } \Phi^+ \ & ext{of cardinality } k \end{array}
ight\} \end{aligned}$$

Back to Narayna Numbers II

When $W = \mathfrak{S}_n$ is the symmetric group

$$\begin{split} N(n,k) = & \frac{1}{n} \binom{n}{k} \binom{n}{k-1} \\ = & \# \left\{ \begin{array}{l} \text{antichains of } \Phi^+ \\ \text{of cardinality } k \end{array} \right\} \end{split}$$

which refine the Catalan numbers

$$C_n = \# \{ \text{antichains of } \Phi^+ \}.$$

Thank you for your attention!

Some References

Drew Armstrong, Victor Reiner, and Brendon Rhoades. Parking spaces. Adv. Math., 269:647-706, 2015.

Frédéric Chapoton.

Antichains of positive roots and Heaviside functions. arXiv 0303220, pages 1-7, 2003.

Galen Dorpalen-Barry. The Varchenko-Gel'fand Ring of a Cone. arXiv 2104.02740, pages 1-16, 2021.

Jian Yi Shi.

Alcoves corresponding to an affine Weyl group.

J. London Math. Soc. (2), 35(1):42-55, 1987.

Thomas Zaslavsky.

A Combinatorial Analysis of Topological Dissections. Advances in Math., 25(3):267–285, 1977.

Notable Mentions

Drew Armstrong and Brendon Rhoades. The Shi arrangement and the lsh arrangement. *Trans. Amer. Math. Soc.*, 364(3):1509–1528, 2012.

James E. Humphreys.

Reflection Groups and Coxeter Groups, volume 29 of *Cambridge Studies in Advanced Mathematics*.

Cambridge University Press, Cambridge, 1990.