Arrangements \& the Varchenko-Gelfand Ring

Galen Dorpalen-Barry

joint with Nick Proudfoot, Jayden Wang, and Christian Stump
Texas A\&M Algebraic Combinatorics Seminar August 26, 2022

Outline

(1) Hyperplane Arrangements \& Open, Convex Sets
(2) A Ring from Regions (arXiv 2208.04855)
(3) Special Case: Catalan Numbers (arXiv 2204.05829)

Arrangements of Hyperplanes

All vector spaces in this talk will be real!

Arrangements of Hyperplanes

All vector spaces in this talk will be real!

- A hyperplane is an affine linear subspace of codimension 1.
- A collection of finitely-many (distinct) hyperplanes is an arrangement.

Arrangements of Hyperplanes

All vector spaces in this talk will be real!

- A hyperplane is an affine linear subspace of codimension 1.
- A collection of finitely-many (distinct) hyperplanes is an arrangement.

Today we'll focus on

- regions (= open, connected components of the complement), and
- intersections (= nonempty intersections of some of the hyperplanes).

Arrangements of Hyperplanes

The following arrangement has 6 regions and the set of intersections is

All vector spaces in this talk will be real!

$$
\mathbb{R}^{2}, H_{1}, H_{2}, H_{3}, H_{1} \cap H_{2} \cap H_{3}
$$

- A hyperplane is an affine linear subspace of codimension 1.
- A collection of finitely-many (distinct) hyperplanes is an arrangement.

Today we'll focus on

- regions (= open, connected components of the complement), and
- intersections (= nonempty intersections of some of the hyperplanes).

Poset of Intersections

Let \mathcal{A} be an arrangement in $V \cong \mathbb{R}^{d}$ with intersections $\mathcal{L}(\mathcal{A})$.

- The elements of $\mathcal{L}(\mathcal{A})$ form a
 poset under reverse inclusion.
- A theorem of Zaslavsky relates the Möbius function values of lower intervals $[V, X] \subseteq \mathcal{L}(\mathcal{A})$ to the number of regions of the arrangement.

Poset of Intersections

Let \mathcal{A} be an arrangement in $V \cong \mathbb{R}^{d}$ with intersections $\mathcal{L}(\mathcal{A})$.

- The elements of $\mathcal{L}(\mathcal{A})$ form a
 poset under reverse inclusion.
- A theorem of Zaslavsky relates the Möbius function values of lower intervals $[V, X] \subseteq \mathcal{L}(\mathcal{A})$ to the number of regions of the arrangement.

Zaslavsky's Theorem

Let \mathcal{A} be an arrangement with regions $\mathcal{R}(\mathcal{A})$ and intersections $\mathcal{L}(\mathcal{A})$.
Theorem (Zaslavsky)

$$
\# \mathcal{R}(\mathcal{A})=\sum_{x \in \mathcal{L}(\mathcal{A})}|\mu(V, X)|
$$

Zaslavsky's Theorem

Let \mathcal{A} be an arrangement with regions $\mathcal{R}(\mathcal{A})$ and intersections $\mathcal{L}(\mathcal{A})$.
Theorem (Zaslavsky)

$$
\# \mathcal{R}(\mathcal{A})=\sum_{X \in \mathcal{L}(\mathcal{A})}|\mu(V, X)|
$$

Note: Zaslavsky's theorem has two parts, depending on whether or not you include the absolute value signs.

Zaslavsky's Theorem

Let \mathcal{A} be an arrangement with regions $\mathcal{R}(\mathcal{A})$ and intersections $\mathcal{L}(\mathcal{A})$.
Theorem (Zaslavsky)

$$
\# \mathcal{R}(\mathcal{A})=\sum_{X \in \mathcal{L}(\mathcal{A})}|\mu(V, X)|
$$

Note: Zaslavsky's theorem has two parts, depending on whether or not you include the absolute value signs.

Zaslavsky's theorem says: $1+3(1)+2=6$.

The Poincaré Polynomial

Let \mathcal{A} be an arrangement in \mathbb{R}^{d} with regions $\mathcal{R}(\mathcal{A})$ and intersections $\mathcal{L}(\mathcal{A})$. Define the Poincaré polynomial of \mathcal{A} by

$$
\operatorname{Poin}(\mathcal{A}, t)=\sum_{X \in \mathcal{L}(\mathcal{A})}|\mu(V, X)| t^{\operatorname{codim}(X)}
$$

Its coefficients are the Whitney numbers of the arrangement.

The Poincaré polynomial of this arrangement is $\operatorname{Poin}(\mathcal{A}, t)=1+3 t+2 t^{2}$.

Hyperplane Arrangements and Open, Convex Sets

Let V be a real vector space,
\mathcal{A} an arrangement, and
$\mathcal{K} \subseteq V$ an open convex set.

Hyperplane Arrangements and Open, Convex Sets

Let V be a real vector space,
\mathcal{A} an arrangement, and
$\mathcal{K} \subseteq V$ an open convex set.
We will study the combinatorics of the pair $(\mathcal{A}, \mathcal{K})$.

Hyperplane Arrangements and Open, Convex Sets

Let V be a real vector space,
\mathcal{A} an arrangement, and
$\mathcal{K} \subseteq V$ an open convex set.
We will study the combinatorics of the pair $(\mathcal{A}, \mathcal{K})$.
Pairs $(\mathcal{A}, \mathcal{K})$ are interesting in the theory of arrangements, as they unify the theory of central and affine arrangements while generalizing both.

Regions and Intersections for a Pair

Let V be a real vector space, \mathcal{A} an arrangement, and $\mathcal{K} \subseteq V$ an open convex set. Moreover let
$\mathcal{R}(\mathcal{A})$ be the regions of \mathcal{A} and
$\mathcal{L}(\mathcal{A})$ its intersections.

Regions and Intersections for a Pair

Let V be a real vector space, \mathcal{A} an arrangement, and $\mathcal{K} \subseteq V$ an open convex set. Moreover let
$\mathcal{R}(\mathcal{A})$ be the regions of \mathcal{A} and
$\mathcal{L}(\mathcal{A})$ its intersections.

- The regions of the pair $(\mathcal{A}, \mathcal{K})$ are the regions of the arrangement which have nonempty intersection with \mathcal{K}, i.e.

$$
\mathcal{R}(\mathcal{A}, \mathcal{K})=\{R \in \mathcal{R}(\mathcal{A}) \mid R \cap \mathcal{K} \neq \emptyset\}
$$

- The intersections of \mathcal{C} are the intersections $X \in \mathcal{L}(\mathcal{A})$ which cut through \mathcal{K}, i.e.,

$$
\mathcal{L}(\mathcal{A}, \mathcal{K})=\{X \in \mathcal{L}(\mathcal{A}) \mid X \cap \mathcal{K} \neq \emptyset\} .
$$

Zaslavsky's Theorem for Pairs

Let V be a real vector space, \mathcal{A} an arrangement, and $\mathcal{K} \subseteq V$ an open convex set. Moreover let
$\mathcal{R}(\mathcal{A})$ be the regions of \mathcal{A} and
$\mathcal{L}(\mathcal{A})$ its intersections.

Theorem (Zaslavsky)

$$
\# \mathcal{R}(\mathcal{A}, \mathcal{K})=\sum_{X \in \mathcal{L}(\mathcal{A}, \mathcal{K})}|\mu(V, X)|
$$

Zaslavsky's theorem says: $1+1(1)=2$.

The Poincaré Polynomial of a Pair

Define the Poincaré polynomial of a pair $(\mathcal{A}, \mathcal{K})$ in an arrangement by

$$
\operatorname{Poin}(\mathcal{A}, \mathcal{K} ; t)=\sum_{X \in \mathcal{L}(\mathcal{A}, \mathcal{K})}|\mu(V, X)| t^{\operatorname{codim}(X)}
$$

Its coefficients are the Whitney numbers of the pair.

The Poincaré polynomial of this pair is $\operatorname{Poin}(\mathcal{A}, \mathcal{K} ; t)=1+1 t$.

Example

Below is an example of a pair, together with its intersection poset

Example

Below is an example of a pair, together with its intersection poset

The Poincaré polynomial of this pair is $\operatorname{Poin}(\mathcal{C}, t)=1+3 t+t^{2}$.

The Varchenko-Gelfand Ring

The Varchenko-Gelfand Ring

based on joint work with Nick Proudfoot and Jayden Wang arXiv 2208.04855

A Ring from Regions

Definition

The Varchenko-Gelfand ring of \mathcal{A} is the set of maps $f: \mathcal{R}(\mathcal{A}) \rightarrow \mathbb{Z}$ with pointwise addition and multiplication.

Example

A Ring from Regions

Definition

The Varchenko-Gelfand ring of \mathcal{A} is the set of maps $f: \mathcal{R}(\mathcal{A}) \rightarrow \mathbb{Z}$ with pointwise addition and multiplication.

Example

Generators for the Varchenko-Gelfand ring

Choose a set of normal vectors such that n_{H} is the normal vector to $H \in \mathcal{A}$. Define a Heaviside function

$$
x_{H}(v)= \begin{cases}1 & \text { if }\left\langle v, n_{H}\right\rangle>0 \\ 0 & \text { else } .\end{cases}
$$

Generators for the Varchenko-Gelfand ring

Choose a set of normal vectors such that n_{H} is the normal vector to $H \in \mathcal{A}$. Define a Heaviside function

$$
x_{H}(v)= \begin{cases}1 & \text { if }\left\langle v, n_{H}\right\rangle>0 \\ 0 & \text { else } .\end{cases}
$$

We can define this instead on regions, by choosing a representative point $v \in R$ for each region and defining $x_{H}(R)=x_{H}(v)$.

Example

Generators for the Varchenko-Gelfand ring

Lemma

Together with 1, these Heaviside functions generate the Varchenko-Gelfand ring as a \mathbb{Z}-algebra.

Let's write out the following element as a polynomial in these Heaviside functions.

Generators for the Varchenko-Gelfand ring

Lemma

Together with 1, these Heaviside functions generate the Varchenko-Gelfand ring as a \mathbb{Z}-algebra.

Let's write out the following element as a polynomial in these Heaviside functions.

A Filtration by Degree

Let \mathcal{A} be an arrangement of hyperplanes in \mathbb{R}^{d}.

- We just saw that the Varchenko-Gelfand ring is generated by Heaviside functions defined by the hyperplanes of \mathcal{A}.
- It also has a filtration $\mathcal{F}: F_{0} \subseteq F_{1} \subseteq \cdots$ by degree, i.e., the collection of additive groups

$$
\begin{aligned}
F_{0} & =\mathbb{Z}-\operatorname{span}\{1\} \\
F_{1} & =\mathbb{Z}-\operatorname{span}\{1\} \cup\left\{x_{H} \mid H \in \mathcal{A}\right\} \\
\vdots & \\
F_{i} & =\mathbb{Z}-\operatorname{span}\{\text { monomials of degree } \leq i\} .
\end{aligned}
$$

- The associated graded ring is $\mathcal{V}(\mathcal{A})=\bigoplus_{i \geq 0} F_{i} / F_{i-1}$.

Two Classical Results

Theorem (Varchenko-Gelfand)

Each graded component F_{i} / F_{i-1} of $\mathcal{V}(\mathcal{A})$ is a free \mathbb{Z}-module with \mathbb{Z}-basis indexed by the no broken circuit sets of the arrangement.

Theorem (Rota)
For $X \in \mathcal{L}(\mathcal{A})$, we have

$$
\left|\mu\left(\mathbb{R}^{d}, X\right)\right|=\#\{\text { no broken circuit sets whose join is } X\} .
$$

Two Classical Results

Theorem (Varchenko-Gelfand)

Each graded component F_{i} / F_{i-1} of $\mathcal{V}(\mathcal{A})$ is a free \mathbb{Z}-module with \mathbb{Z}-basis indexed by the no broken circuit sets of the arrangement.

Theorem (Rota)
For $X \in \mathcal{L}(\mathcal{A})$, we have

$$
\left|\mu\left(\mathbb{R}^{d}, X\right)\right|=\#\{\text { no broken circuit sets whose join is } X\} .
$$

Combining these theorems gives

$$
\operatorname{Hilb}(\mathcal{V}(\mathcal{A}), t)=\operatorname{Poin}(\mathcal{A}, t)
$$

Two Classical Results

Theorem (Varchenko-Gelfand)
Each graded component F_{i} / F_{i-1} of $\mathcal{V}(\mathcal{A})$ is a free \mathbb{Z}-module with \mathbb{Z}-basis indexed by the no broken circuit sets of the arrangement.

Theorem (Rota)
For $X \in \mathcal{L}(\mathcal{A})$, we have

$$
\left|\mu\left(\mathbb{R}^{d}, X\right)\right|=\#\{\text { no broken circuit sets whose join is } X\} .
$$

Combining these theorems gives

$$
\operatorname{Hilb}(\mathcal{V}(\mathcal{A}), t)=\operatorname{Poin}(\mathcal{A}, t)
$$

Gelfand-Rybnikov extended Varchenko-Gelfand's work to oriented matroids. Rota's theorem still holds in that setting, and the Hilbert series is the Poincaré polynomial of the oriented matroid.

Example

Consider the arrangement in \mathbb{R}^{2} with normal vectors

$$
v_{1}=(1,-1), v_{2}=(0,1), \text { and } v_{3}=(1,1) \text { (drawn below, left). }
$$

- Signed circuits: ++- , -+
- Unsigned circuit: $\{1,2,3\}$
- No broken circuit sets: $\emptyset, 1,2,3,12,13$

Example

Consider the arrangement in \mathbb{R}^{2} with normal vectors $v_{1}=(1,-1), v_{2}=(0,1)$, and $v_{3}=(1,1)$ (drawn below, left).

- Signed circuits:,++---+
- Unsigned circuit: $\{1,2,3\}$
- No broken circuit sets: $\emptyset, 1,2,3,12,13$

Varchenko-Gelfand showed that

$$
\mathcal{V}(\mathcal{A}) \cong \mathbb{Z} \cdot\{1\} \oplus \mathbb{Z} \cdot\left\{x_{1}, x_{2}, x_{3}\right\} \oplus \mathbb{Z} \cdot\left\{x_{1} x_{2}, x_{1} x_{3}\right\}
$$

where $\mathbb{Z} \cdot\{-\}$ denotes the \mathbb{Z}-span of - . Then the Hilbert series is

$$
\operatorname{Hilb}(\mathcal{V}(\mathcal{A}), t)=1+3 t+2 t^{2}
$$

which matches the Poincaré polynomial we computed earlier.

Varchenko-Gelfand Ring of a Pair

Definition

The Varchenko-Gelfand ring of a pair $(\mathcal{A}, \mathcal{K})$ is the set of maps $f: \mathcal{R}(\mathcal{A}, \mathcal{K}) \rightarrow \mathbb{Z}$ with pointwise addition and multiplication.

As in the original setting, this ring is generated by Heaviside functions and admits a Heaviside filtration.

Varchenko-Gelfand Ring of a Pair

Definition

The Varchenko-Gelfand ring of a pair $(\mathcal{A}, \mathcal{K})$ is the set of maps $f: \mathcal{R}(\mathcal{A}, \mathcal{K}) \rightarrow \mathbb{Z}$ with pointwise addition and multiplication.

As in the original setting, this ring is generated by Heaviside functions and admits a Heaviside filtration.

Theorem ((DB)PW, 2022)
Let E be the set of hyperplanes that cut through \mathcal{K} and $R:=\mathbb{Z}\left[e_{i} \mid i \in E\right]$, we have isomorphisms

$$
\begin{aligned}
\operatorname{GR}(\mathcal{A}, \mathcal{K}) & \cong R / I_{(\mathcal{A}, \mathcal{K})} \\
\operatorname{grGR}(\mathcal{A}, \mathcal{K}) & \cong R / J_{(\mathcal{A}, \mathcal{K})}
\end{aligned}
$$

where the three quotienting ideals depend only on the conditional oriented matroid of the pair.

What is a conditional oriented matroid?

The short version:

- The combinatorics of a hyperplane arrangement \mathcal{A} is captured by an oriented matroid.
- The combinatorics of a pair $(\mathcal{A}, \mathcal{K})$ is captured by a conditional oriented matroid.

What is a conditional oriented matroid?

The short version:

- The combinatorics of a hyperplane arrangement \mathcal{A} is captured by an oriented matroid.
- The combinatorics of a pair $(\mathcal{A}, \mathcal{K})$ is captured by a conditional oriented matroid.

What is a conditional oriented matroid?

The short version:

- The combinatorics of a hyperplane arrangement \mathcal{A} is captured by an oriented matroid.
- The combinatorics of a pair $(\mathcal{A}, \mathcal{K})$ is captured by a conditional oriented matroid.

To make this precise, we need a few vocabulary items...

Signed Sets

Let E be a finite set. Recall,

- A signed set is an ordered pair $X=\left(X^{+}, X^{-}\right)$of disjoint subsets. - The support of $X=\left(X^{+}, X^{-}\right)$is $\underline{X}:=X^{+} \cup X^{-}$.

Signed Sets

Let E be a finite set. Recall,

- A signed set is an ordered pair $X=\left(X^{+}, X^{-}\right)$of disjoint subsets.
- The support of $X=\left(X^{+}, X^{-}\right)$is $\underline{X}:=X^{+} \cup X^{-}$.
- The separating set of signed sets X, Y is the set of coordinates in the intersection of the supports at which X and Y differ, i.e.,

$$
\operatorname{Sep}(X, Y):=\left\{i \in E \mid X_{i}=-Y_{i} \neq 0\right\}
$$

Signed Sets

Let E be a finite set. Recall,

- A signed set is an ordered pair $X=\left(X^{+}, X^{-}\right)$of disjoint subsets.
- The support of $X=\left(X^{+}, X^{-}\right)$is $\underline{X}:=X^{+} \cup X^{-}$.
- The separating set of signed sets X, Y is the set of coordinates in the intersection of the supports at which X and Y differ, i.e.,

$$
\operatorname{Sep}(X, Y):=\left\{i \in E \mid X_{i}=-Y_{i} \neq 0\right\}
$$

- The composition $X \circ Y$ of two signed sets is a signed set defined by

$$
(X \circ Y)_{i}:=\left\{\begin{array}{ll}
X_{i} & \text { if } X_{i} \neq 0 \\
Y_{i} & \text { otherwise }
\end{array} \quad \text { for all } i \in E\right.
$$

where $X_{i}=+$ if $i \in X^{+}, X_{i}=-$ if $i \in X^{-}$and $X_{i}=0$ otherwise.

Conditional Oriented Matroids

Let E be a finite set.

Definition

A conditional oriented matroid on the ground set E is a collection \mathcal{L} of signed sets, called covectors, satisfying both of the following two conditions:

- If $X, Y \in \mathcal{L}$, then $X \circ-Y \in \mathcal{L}$.
- If $X, Y \in \mathcal{L}$ and $i \in \operatorname{Sep}(X, Y)$, then there exists $Z \in \mathcal{L}$ with $Z_{i}=0$ and $Z_{j}=(X \circ Y)_{j}$ for all $j \in E \backslash \operatorname{Sep}(X, Y)$.

Conditional Oriented Matroids

Let E be a finite set.

Definition

A conditional oriented matroid on the ground set E is a collection \mathcal{L} of signed sets, called covectors, satisfying both of the following two conditions:

- If $X, Y \in \mathcal{L}$, then $X \circ-Y \in \mathcal{L}$.
- If $X, Y \in \mathcal{L}$ and $i \in \operatorname{Sep}(X, Y)$, then there exists $Z \in \mathcal{L}$ with $Z_{i}=0$ and $Z_{j}=(X \circ Y)_{j}$ for all $j \in E \backslash \operatorname{Sep}(X, Y)$.

[^0]
Conditional Oriented Matroids

Let E be a finite set.

Definition

A conditional oriented matroid on the ground set E is a collection \mathcal{L} of signed sets, called covectors, satisfying both of the following two conditions:

- If $X, Y \in \mathcal{L}$, then $X \circ-Y \in \mathcal{L}$.
- If $X, Y \in \mathcal{L}$ and $i \in \operatorname{Sep}(X, Y)$, then there exists $Z \in \mathcal{L}$ with $Z_{i}=0$ and $Z_{j}=(X \circ Y)_{j}$ for all $j \in E \backslash \operatorname{Sep}(X, Y)$.

1st axiom says: \mathcal{K} is open
 2nd axiom says: \mathcal{K} is convex

Question. What is the analogue of the Varchenko-Gelfand ring for a COM?

Conditional Oriented Matroids

Let E be a finite set.

Definition

A conditional oriented matroid on the ground set E is a collection \mathcal{L} of signed sets, called covectors, satisfying both of the following two conditions:

- If $X, Y \in \mathcal{L}$, then $X \circ-Y \in \mathcal{L}$.
- If $X, Y \in \mathcal{L}$ and $i \in \operatorname{Sep}(X, Y)$, then there exists $Z \in \mathcal{L}$ with $Z_{i}=0$ and $Z_{j}=(X \circ Y)_{j}$ for all $j \in E \backslash \operatorname{Sep}(X, Y)$.

1st axiom says: \mathcal{K} is open
 2nd axiom says: \mathcal{K} is convex

Question. What is the analogue of the Gelfand-Rybnikov ring for a COM?

Conditional Oriented Matroids

Let E be a finite set.

Definition

A conditional oriented matroid on the ground set E is a collection \mathcal{L} of signed sets, called covectors, satisfying both of the following two conditions:

- If $X, Y \in \mathcal{L}$, then $X \circ-Y \in \mathcal{L}$.
- If $X, Y \in \mathcal{L}$ and $i \in \operatorname{Sep}(X, Y)$, then there exists $Z \in \mathcal{L}$ with $Z_{i}=0$ and $Z_{j}=(X \circ Y)_{j}$ for all $j \in E \backslash \operatorname{Sep}(X, Y)$.

Question. What is the analogue of the Gelfand-Rybnikov ring for a COM?

Conditional Oriented Matroids

Let E be a finite set.

Definition

A conditional oriented matroid on the ground set E is a collection \mathcal{L} of signed sets, called covectors, satisfying both of the following two conditions:

- If $X, Y \in \mathcal{L}$, then $X \circ-Y \in \mathcal{L}$.
- If $X, Y \in \mathcal{L}$ and $i \in \operatorname{Sep}(X, Y)$, then there exists $Z \in \mathcal{L}$ with $Z_{i}=0$ and $Z_{j}=(X \circ Y)_{j}$ for all $j \in E \backslash \operatorname{Sep}(X, Y)$.

Question. What is the analogue of the Gelfand-Rybnikov ring for a COM?

Now replace chambers with topes which are signed sets $X \in \mathcal{L}$ whose support is the whole ground set.

Gelfand-Rybnikov Ring

Let \mathcal{L} be a conditional oriented matroid.

Definition

The Gelfand-Rybnikov ring of \mathcal{L} is the set of maps

$$
f:\{\text { topes of } \mathcal{L}\} \rightarrow \mathbb{Z}
$$

with pointwise addition and multiplication.

Gelfand-Rybnikov Ring

Let \mathcal{L} be a conditional oriented matroid.

Definition

The Gelfand-Rybnikov ring of \mathcal{L} is the set of maps

$$
f:\{\text { topes of } \mathcal{L}\} \rightarrow \mathbb{Z}
$$

with pointwise addition and multiplication.

Theorem ((DB)PW, 2022)
For $R:=\mathbb{Z}\left[e_{i} \mid i \in E\right]$, we have

$$
\operatorname{GR}(\mathcal{L}) \cong R / I_{\mathcal{L}} \quad \text { and } \quad \operatorname{grGR}(\mathcal{L}) \cong R / J_{\mathcal{L}} .
$$

where these ideals come from the set of signed sets X such that

$$
X \circ Y \notin \mathcal{L} \quad \text { for all } Y \in \mathcal{L}
$$

Special Case: Catalan Numbers

Special Case: Catalan Numbers
 based on joint work with Christian Stump arXiv 2204.05829

What is the Shi arrangement?

Let $\Delta \subseteq \Phi^{+} \subseteq \Phi$ be an irreducible crystallographic root system with a choice of positive and simple roots.

What is the Shi arrangement?

Let $\Delta \subseteq \Phi^{+} \subseteq \Phi$ be an irreducible crystallographic root system with a choice of positive and simple roots.

The Shi arrangement of associated to Φ^{+}has hyperplanes

$$
H_{\beta, k}=\left\{x \in \mathbb{R}^{n} \mid\langle\beta, x\rangle=k\right\}
$$

for $\beta \in \Phi^{+}$and $k=0,1$.

What is the Shi arrangement?

Let $\Delta \subseteq \Phi^{+} \subseteq \Phi$ be an irreducible crystallographic root system with a choice of positive and simple roots.

The Shi arrangement of associated to Φ^{+}has hyperplanes

$$
H_{\beta, k}=\left\{x \in \mathbb{R}^{n} \mid\langle\beta, x\rangle=k\right\}
$$

for $\beta \in \Phi^{+}$and $k=0,1$.

Example

The (Type A) Shi arrangement $\operatorname{Shi}\left(\Phi^{+}\right)$has hyperplanes

$$
H_{i, j, k}=\left\{x \in \mathbb{R}^{n} \mid x_{i}-x_{j}=k\right\}
$$

for $i<j \in[n]:=\{1,2, \ldots, n\}$ and $k=0,1$.

Weyl Cones

Every Shi arrangement has a reflection subarrangement with hyperplanes

$$
H_{\beta, 0}=\left\{x \in \mathbb{R}^{n} \mid\langle\beta, x\rangle=0\right\}
$$

for $\beta \in \Phi^{+}$.

Weyl Cones

Every Shi arrangement has a reflection subarrangement with hyperplanes

$$
H_{\beta, 0}=\left\{x \in \mathbb{R}^{n} \mid\langle\beta, x\rangle=0\right\}
$$

for $\beta \in \Phi^{+}$.
On the right, we show the Type A and Type B Shi arrangements (in rank 2). The hyperplanes of the reflection subarrangement are bolded.

Weyl Cones

Every chamber of the reflection subarrangement defines a Weyl cone of the Shi arrangement.

Weyl Cones

Every chamber of the reflection subarrangement defines a Weyl cone of the Shi arrangement.

Fact

The Weyl cones of $\operatorname{Shi}\left(\Phi^{+}\right)$are in bijection with the elements of the corresponding Weyl group W.

The region associated with the identity of W is sometimes called the dominant cone.

Weyl Cones

Every chamber of the reflection subarrangement defines a Weyl cone of the Shi arrangement.

Fact

The Weyl cones of $\operatorname{Shi}\left(\Phi^{+}\right)$are in bijection with the elements of the corresponding Weyl group W.

The region associated with the identity of W is sometimes called the dominant cone.

On the right, we draw the A_{2} Shi
 arrangement, and shade the dominant cone ($=$ Weyl cone associated to $123 \in \mathfrak{S}_{n}$).

Regions of Weyl Cones

The root poset is the poset on Φ^{+}with order relations $\beta \prec \gamma$ if $\gamma-\beta$ is a nonnegative linear combination of simple roots.

Regions of Weyl Cones

The root poset is the poset on Φ^{+}with order relations $\beta \prec \gamma$ if $\gamma-\beta$ is a nonnegative linear combination of simple roots.

Theorem (Shi/Athanasiadis)

The regions of the dominant cone are in bijection with antichains of the root poset.

Regions of Weyl Cones

The root poset is the poset on Φ^{+}with order relations $\beta \prec \gamma$ if $\gamma-\beta$ is a nonnegative linear combination of simple roots.

Theorem (Shi/Athanasiadis)

The regions of the dominant cone are in bijection with antichains of the root poset.

Theorem (Armstrong-Reiner-Rhoades)

For $w \in W$, the regions of the Weyl cone are in bijection with antichains of

$$
\Phi^{+} \backslash i n v\left(w^{-1}\right)
$$

where $\operatorname{inv}\left(w^{-1}\right)$ is the inversion set of w^{-1}.

Intersection Posets of Weyl Cones

Theorem ((DB)S 2022)
The intersection poset of $w C$ is the set of antichains of $\Phi^{+} \backslash i n v\left(w^{-1}\right)$ ordered by inclusion.

Intersection Posets of Weyl Cones

Theorem ((DB)S 2022)

The intersection poset of $w C$ is the set of antichains of $\Phi^{+} \backslash i n v\left(w^{-1}\right)$ ordered by inclusion.

If e is the identity element of W, theorem theorem says

$$
\operatorname{Poin}(e C, t)=\sum_{\substack{\text { anitchains } \\ A \subseteq \Phi^{+}}} t^{\# A} .
$$

Intersection Posets of Weyl Cones

Theorem ((DB)S 2022)

The intersection poset of wC is the set of antichains of $\Phi^{+} \backslash i n v\left(w^{-1}\right)$ ordered by inclusion.

If e is the identity element of W, theorem theorem says

$$
\operatorname{Poin}(e C, t)=\sum_{\substack{\text { anitchains } \\ A \subseteq \Phi^{+}}} t^{\# A} .
$$

Recall that the W-Narayana numbers

$$
N\left(\Phi^{+}, k\right)=\#\left\{\begin{array}{c}
\text { antichains of } \Phi^{+} \\
\text {of cardinality } k
\end{array}\right\}
$$

Intersection Posets of Weyl Cones

Theorem ((DB)S 2022)

The intersection poset of wC is the set of antichains of $\Phi^{+} \backslash i n v\left(w^{-1}\right)$ ordered by inclusion.

If e is the identity element of W, theorem theorem says

$$
\operatorname{Poin}(e C, t)=\sum_{\substack{\text { anitchains } \\ A \subseteq \Phi^{+}}} t^{\# A} .
$$

Recall that the W-Narayana numbers

$$
N\left(\Phi^{+}, k\right)=\#\left\{\begin{array}{c}
\text { antichains of } \Phi^{+} \\
\text {of cardinality } k
\end{array}\right\}
$$

refine the W-Catalan numbers

$$
C\left(\Phi^{+}\right)=\#\left\{\text { antichains of } \Phi^{+}\right\}
$$

Intersection Posets of Weyl Cones

Theorem ((DB)S 2022)
The intersection poset of $w C$ is the set of antichains of $\Phi^{+} \backslash i n v\left(w^{-1}\right)$ ordered by inclusion.

Intersection Posets of Weyl Cones

Theorem ((DB)S 2022)
The intersection poset of $w C$ is the set of antichains of $\Phi^{+} \backslash i n v\left(w^{-1}\right)$ ordered by inclusion.

Some comments on the proof:

- This theorem has an elementary/geometric proof.

Intersection Posets of Weyl Cones

Theorem ((DB)S 2022)
The intersection poset of $w C$ is the set of antichains of $\Phi^{+} \backslash \operatorname{inv}\left(w^{-1}\right)$ ordered by inclusion.

Some comments on the proof:

- This theorem has an elementary/geometric proof.
- The interpretation of the Poincaré polynomial has a second proof via commutative algebra.

Intersection Posets of Weyl Cones

Theorem ((DB)S 2022)
The intersection poset of $w C$ is the set of antichains of $\Phi^{+} \backslash \operatorname{inv}\left(w^{-1}\right)$ ordered by inclusion.

Some comments on the proof:

- This theorem has an elementary/geometric proof.
- The interpretation of the Poincaré polynomial has a second proof via commutative algebra.
In the remainder of this talk, I want to tell you a bit about the algebraic proof.

Back to the Varchenko-Gelfand Ring

Another Presentation

Let $\Delta \subset \Phi^{+} \subset \Phi$ be an irreducible crystallographic root system with choice of simple and positive roots.

Theorem (Chapoton)

When C is the domiant cone of $\operatorname{Shi}\left(\Phi^{+}\right)$, there exists an ideal $I_{\Phi^{+}} \subseteq \mathbb{Z}\left[e_{H} \mid H \in \mathcal{A}\right]$ such that

$$
\begin{aligned}
V G(\mathcal{C}) & \cong \mathbb{Z}\left[e_{H} \mid H \in \mathcal{A}\right] / I_{\Phi^{+}} \\
\mathfrak{g r V G}(\mathcal{C}) & \cong \mathbb{Z}\left[e_{H} \mid H \in \mathcal{A}\right] /\left(i n_{\operatorname{deg}} l_{\Phi^{+}}\right)
\end{aligned}
$$

In particular, both have bases indexed by antichains and

$$
\operatorname{Hilb}(\mathfrak{g r} V G(w C) ; t)=\sum_{\substack{\text { anitchains } \\ A \subseteq \Phi^{+}}} t^{\# A}
$$

Once you know what to look for, Chapoton's argument has the following easy extension to all Weyl cones.

Another Presentation

Let $\Delta \subset \Phi^{+} \subset \Phi$ be an irreducible crystallographic root system with choice of simple and positive roots.

Theorem (Chapoton + Armstrong-Reiner-Rhoades)
Let W be the Weyl group associated to Φ^{+}and $w \in W$. Then there exists an ideal $I_{\Phi^{+}, w} \subseteq \mathbb{Z}\left[e_{H} \mid H \in \mathcal{A}\right]$ such that

$$
\begin{aligned}
V G(\mathcal{C}) & \cong \mathbb{Z}\left[e_{H} \mid H \in \mathcal{A}\right] / I_{\Phi^{+}, w} \\
\mathfrak{g r} V G(\mathcal{C}) & \cong \mathbb{Z}\left[e_{H} \mid H \in \mathcal{A}\right] /\left(i n_{\operatorname{deg}} I_{\Phi^{+}, w}\right)
\end{aligned}
$$

In particular, both have bases indexed by antichains and

$$
\operatorname{Hilb}(\mathfrak{g r} V G(w C) ; t)=\sum_{\substack{\text { anitchains } \\ A \subseteq \Phi^{+} \backslash i n v\left(w^{-1}\right)}} t^{\# A} .
$$

[^1]
Another Presentation

Let $\Delta \subset \Phi^{+} \subset \Phi$ be an irreducible crystallographic root system with choice of simple and positive roots.

Theorem (Chapoton + Armstrong-Reiner-Rhoades)
Let W be the Weyl group associated to Φ^{+}and $w \in W$. Then there exists an ideal $I_{\Phi^{+}, w} \subseteq \mathbb{Z}\left[e_{H} \mid H \in \mathcal{A}\right]$ such that

$$
\begin{aligned}
V G(\mathcal{C}) & \cong \mathbb{Z}\left[e_{H} \mid H \in \mathcal{A}\right] / I_{\Phi^{+}, w} \\
\mathfrak{g r} V G(\mathcal{C}) & \cong \mathbb{Z}\left[e_{H} \mid H \in \mathcal{A}\right] /\left(i n_{\operatorname{deg}} I_{\Phi^{+}, w}\right)
\end{aligned}
$$

In particular, both have bases indexed by antichains and

$$
\operatorname{Hilb}(\mathfrak{g r} V G(w C) ; t)=\sum_{\substack{\text { anitchains } \\ A \subseteq \Phi^{+} \backslash i n v\left(w^{-1}\right)}} t^{\# A} .
$$

This extends to Shi deletions as well. But how to get to the Poincaré polynomial?

A General Presentation

Let $(\mathcal{A}, \mathcal{K})$ be a pair with regions $\mathcal{R}(\mathcal{A}, \mathcal{K})$. The following is a special case of the theorem from (DB)PW earlier.

Theorem (DB, 21)

For convex sets defined by intersections of halfspaces, one obtains a simpler set of generators $\mathcal{G} \subseteq \mathbb{Z}\left[e_{H} \mid H \in \mathcal{A}\right]$ such that for any "compatible" monomial order

$$
\begin{aligned}
\operatorname{GR}(\mathcal{A}, \mathcal{K}) & \cong \mathbb{Z}\left[e_{H} \mid H \in \mathcal{A}\right] /(\mathcal{G}) \\
\operatorname{gr} \operatorname{GR}(\mathcal{A}, \mathcal{K}) & \cong \mathbb{Z}\left[e_{H} \mid H \in \mathcal{A}\right] /\left(i n_{\operatorname{deg}} \mathcal{G}\right)
\end{aligned}
$$

In particular, the Hilbert series is

$$
\operatorname{Hilb}(\operatorname{gr} \operatorname{GR}(\mathcal{A}, \mathcal{K}) ; t)=\operatorname{Poin}((\mathcal{A}, \mathcal{K}), t)
$$

[^2]
Combining these Results

Let $\Delta \subset \Phi^{+} \subset \Phi$ be an irreducible crystallographic root system with choice of simple and positive roots. Let W be the Weyl group associated to Φ^{+}and $w \in W$ and $w \in W$.

$$
\operatorname{Poin}(w C, t)=\operatorname{Hilb}(\mathfrak{g r} V G(w C) ; t)=\sum_{\substack{\text { anitchains } \\ A \subseteq \Phi^{+} \backslash \operatorname{inv}\left(w^{-1}\right)}} t^{\# A} .
$$

Combining these Results

Let $\Delta \subset \Phi^{+} \subset \Phi$ be an irreducible crystallographic root system with choice of simple and positive roots. Let W be the Weyl group associated to Φ^{+}and $w \in W$ and $w \in W$.

$$
\operatorname{Poin}(w C, t)=\operatorname{Hilb}(\mathfrak{g r} V G(w C) ; t)=\sum_{\substack{\text { anitchains } \\ A \subseteq \Phi^{+} \backslash i n v\left(w^{-1}\right)}} t^{\# A}
$$

This extends to Shi deletions as well.

Combining these Results

Let $\Delta \subset \Phi^{+} \subset \Phi$ be an irreducible crystallographic root system with choice of simple and positive roots. Let W be the Weyl group associated to Φ^{+}and $w \in W$ and $w \in W$.

$$
\operatorname{Poin}(w C, t)=\operatorname{Hilb}(\mathfrak{g r} V G(w C) ; t)=\sum_{\substack{\text { anitchains } \\ A \subseteq \Phi^{+} \backslash \operatorname{inv}\left(w^{-1}\right)}} t^{\# A} .
$$

This extends to Shi deletions as well.

Let's look back at the dominant cone for Type A...

Back to Narayna Numbers I

On the previous slide, we saw that

$$
\operatorname{Poin}(\sigma C, t)=\sum_{\substack{\text { anitchains } \\ A \subseteq \Phi^{+} \backslash \operatorname{inv}\left(w^{-1}\right)}} t^{\# A} .
$$

Back to Narayna Numbers I

On the previous slide, we saw that

$$
\operatorname{Poin}(\sigma C, t)=\sum_{\substack{\text { anitchains } \\ A \subseteq \Phi^{+} \backslash i \operatorname{inv}\left(w^{-1}\right)}} t^{\# A}
$$

If w is the identity element of W

$$
\begin{aligned}
\operatorname{Poin}(\sigma C, t) & =\sum_{\substack{\text { anitchains } \\
A \subseteq \Phi^{+}}} t^{\# A} \\
& =\sum_{k \geq 0} \#\left\{\begin{array}{c}
\text { antichains of } \\
\text { cardinality } k
\end{array}\right\} t^{k} .
\end{aligned}
$$

Back to Narayna Numbers I

On the previous slide, we saw that

$$
\operatorname{Poin}(\sigma C, t)=\sum_{\substack{\text { anitchains } \\ A \subseteq \Phi^{+} \backslash i \operatorname{inv}\left(w^{-1}\right)}} t^{\# A} .
$$

If w is the identity element of W

$$
\begin{aligned}
\operatorname{Poin}(\sigma C, t) & =\sum_{\substack{\text { anitchains } \\
A \subseteq \Phi^{+}}} t^{\# A} \\
& =\sum_{k \geq 0} \#\left\{\begin{array}{l}
\text { antichains of } \\
\text { cardinality } k
\end{array}\right\} t^{k} .
\end{aligned}
$$

These are precisely the W-Narayana numbers.

Back to Narayna Numbers II

When $W=\mathfrak{S}_{n}$ is the symmetric group

$$
\begin{aligned}
N(n, k) & =\frac{1}{n}\binom{n}{k}\binom{n}{k-1} \\
& =\#\left\{\begin{array}{c}
\text { antichains of } \Phi^{+} \\
\text {of cardinality } k
\end{array}\right\}
\end{aligned}
$$

Back to Narayna Numbers II

When $W=\mathfrak{S}_{n}$ is the symmetric group

$$
\begin{aligned}
N(n, k) & =\frac{1}{n}\binom{n}{k}\binom{n}{k-1} \\
& =\#\left\{\begin{array}{c}
\text { antichains of } \Phi^{+} \\
\text {of cardinality } k
\end{array}\right\}
\end{aligned}
$$

which refine the Catalan numbers

$$
C_{n}=\#\left\{\text { antichains of } \Phi^{+}\right\}
$$

Thank you for your attention!

Some References

Rew Armstrong，Victor Reiner，and Brendon Rhoades．
Parking spaces．
Adv．Math．，269：647－706， 2015.
Frédéric Chapoton．
Antichains of positive roots and Heaviside functions．
arXiv 0303220，pages 1－7， 2003.
囯 Galen Dorpalen－Barry．
The Varchenko－Gel＇fand Ring of a Cone．
arXiv 2104．02740，pages 1－16， 2021.
固 Jian Yi Shi．
Alcoves corresponding to an affine Weyl group．
J．London Math．Soc．（2），35（1）：42－55， 1987.
围 Thomas Zaslavsky．
A Combinatorial Analysis of Topological Dissections．
Advances in Math．，25（3）：267－285， 1977.

Notable Mentions

Drew Armstrong and Brendon Rhoades.
The Shi arrangement and the Ish arrangement.
Trans. Amer. Math. Soc., 364(3):1509-1528, 2012.
(James E. Humphreys.
Reflection Groups and Coxeter Groups, volume 29 of Cambridge Studies in Advanced Mathematics.
Cambridge University Press, Cambridge, 1990.

[^0]: 1st axiom says: \mathcal{K} is open
 2nd axiom says: \mathcal{K} is convex

[^1]: This extends to Shi deletions as well.

[^2]: The $\mathcal{K}=V$ case was first proved by Varchenko and Gelfand.

