Cones of Hyperplane Arrangements

Galen Dorpalen-Barry

contains joint work with Jang Soo Kim, Nick Proudfoot, Vic Reiner, Christian Stump, and Jayden Wang

> Texas A&M Colloquium May 1, 2023

Outline

1 Hyperplane Arrangements & Convex Sets

2 Examples of Cones

3 The Varchenko-Gel'fand Ring

What is an arrangement of hyperplanes?

Let $V \cong \mathbb{R}^d$ be a real vector space.

- A *hyperplane* is an affine linear subspace of codimension 1.
- A collection of finitely-many (distinct) hyperplanes is an *arrangement*.

Why arrangements of hyperplanes?

- Linear optimization, linear programming
- Graph theory
- Matroid and oriented matroid theory
- Polytopes
- ..

Example (Mathematical Physics)

Recently the *residual arrangement* of a convex polytope has been useful in computing *canonical forms* associated to *positive geometries*.

(Gaetz, Kohn–Ranestad, Lam)

 \mathcal{A} : (central) arrangement in \mathbb{R}^d $M_2 := (V \otimes \mathbb{C}) \setminus \bigcup_{H \in \mathcal{A}} (H \otimes \mathbb{C})$, and

$$\mathsf{Poin}(\mathcal{A},t) := \sum_{d \ge 0} \mathsf{rank}_{\mathbb{Z}}(H^d(M_2;\mathbb{Z})) \ t^d$$
.

 $egin{array}{lll} \mathcal{A}: \end{arrangement} \mbox{ in } \mathbb{R}^d \ \mathcal{M}_2:=(V\otimes \mathbb{C})\setminus igcup_{H\in \mathcal{A}}(H\otimes \mathbb{C}), \ \mbox{and} \end{array}$

$$\mathsf{Poin}(\mathcal{A},t) := \sum_{d \geq 0} \mathsf{rank}_{\mathbb{Z}}(H^d(M_2;\mathbb{Z})) \, t^d \, .$$

Work of Arnol'd, Brieskorn, Orlik-Solomon shows

$$\mathsf{Poin}(\mathcal{A}, t) = \sum_{X \in \mathcal{L}(\mathcal{A})} |\mu(V, X)| t^{\mathsf{codim}(X)}$$

where $\mathcal{L}(\mathcal{A})$ is the set of **intersections** of \mathcal{A} and $\mu(-,-)$ is the Möbius function of $\mathcal{L}(\mathcal{A})$ partially ordered by reverse inclusion.

This arrangement has 4 regions and the set of intersections is

$$\{ \mathbb{R}^3, H, H', H \cap H' \}$$

 \mathcal{A} : (central) arrangement in \mathbb{R}^d $M_3 := V \otimes \mathbb{R}^3 \setminus \bigcup_{H \in \mathcal{A}} (H \otimes \mathbb{R}^3)$, and

$$\mathsf{Poin}(\mathcal{A},t) = \sum_{d \geq 0} \mathsf{rank}_{\mathbb{Z}}(H^d(M_3;\mathbb{Z})) \, t^d \, .$$

Work of Varchenko–Gel'fand and Moseley shows

$$\mathsf{Poin}(\mathcal{A}, t) = \sum_{X \in \mathcal{L}(\mathcal{A})} |\mu(V, X)| t^{\mathsf{codim}(X)}$$

where $\mathcal{L}(\mathcal{A})$ is the set of **intersections** of \mathcal{A} and $\mu(-,-)$ is the Möbius function of $\mathcal{L}(\mathcal{A})$ partially ordered by reverse inclusion. This arrangement has 4 regions and the set of intersections is

$$\{ \mathbb{R}^3, H, H', H \cap H' \}$$

 $\mathsf{Poin}(\mathcal{A}, t)$ is related to...

- Number of regions/bounded of the arrangement (Zaslavsky's theorem)
- Tutte polynomial,
- characteristic polynomial,
- chromatic polynomial (of a graphic arrangement),
- Orlik-Solomon algebra,

• ..

This arrangement has 4 regions and the set of intersections is

 $\{ \mathbb{R}^3, H, H', H \cap H' \}$

Cones of Hyperplane Arrangements

- A cone \mathcal{K} of an arrangement \mathcal{A} is an intersection of (open) halfspaces defined by some of the hyperplanes of \mathcal{A} .
- Cones unify the theory of **central** and **affine** arrangements while generalizing both.

The second example cannot be realized as an (affine) hyperplane arrangement.

The Poincaré Polynomial of a Cone

The Poincaré polynomial of a cone ${\mathcal K}$ is

$$\mathsf{Poin}(\mathcal{K},t) = \sum_{X \in \mathcal{L}(\mathcal{K})} |\mu(V,X)| t^{\mathsf{codim}(X)}.$$

where $\mathcal{L}(\mathcal{K})$ is the set of intersections X of A such that $X \cap \mathcal{K} \neq \emptyset$.

The Poincaré Polynomial of a Cone

The Poincaré polynomial of a cone ${\mathcal K}$ is

$$\mathsf{Poin}(\mathcal{K},t) = \sum_{X \in \mathcal{L}(\mathcal{K})} |\mu(V,X)| t^{\mathsf{codim}(X)}.$$

where $\mathcal{L}(\mathcal{K})$ is the set of intersections X of A such that $X \cap \mathcal{K} \neq \emptyset$.

This is a reasonable thing to do:

Theorem (DB-Proudfoot-Wang, '23)

There exists a topological space generalizing M_3 whose cohomology ring has Hilbert-Poincaré series is $Poin(\mathcal{K}, t)$.

Below (left) is an example of a cone in an affine arrangement, together with its intersection poset (right)

Below (left) is an example of a cone in an affine arrangement, together with its intersection poset (right)

The Poincaré polynomial of this cone is $Poin(\mathcal{K}, t) = 1 + 3t + t^2$.

$$Poin(\mathcal{K}, 1) = 5 = \frac{1}{3+1} {2 \cdot 3 \choose 3}$$

=#{increasing parking functions (c₁, c₂, c₃)}
=#{Dyck paths of length 6}
=#{231-avoiding permutations in \mathfrak{S}_3 }
=3rd **Catalan number**

Special case of Athanasiadis/Shi.

Have: Poin(K, t) = 1 + 3t + t^2 .

Moreover, the coefficients are the n = 3Narayana numbers

$$N(n,k) = \frac{1}{n} \binom{n}{k} \binom{n}{k-1}.$$

Special case of (details later):

Theorem (DB–Stump, '22)

For the Shi arrangement associated to Φ^+ Poin(eC, t) has coefficients: the Narayana numbers.

Big Picture

Cones are more general than hyperplane arrangements. The previous example is a pair which cannot be realized as an (affine) hyperplane arrangement.

Cones arise naturally in mathematics (and beyond). We'll look at two examples coming from Coxeter groups.

The cone-perspective helps solve problems. We'll illustrate this with a numerical problem concerning the Varchenko-Gel'fand ring.

The interaction between convexity and hyperplane arrangements is well-studied...

O Cones of Hyperplane Arrangements

- Cones and Lunes (Aguiar–Mahajan),
- Convex collections of regions (Bidigare–Hanlon–Rockmore, Brown),
- Poset cones in the Braid arrangement (Postnikov-Reiner-Williams, Ardila-Sanchez)
- Weyl cones for Shi and Ish arrangements (Athanasiadis, Shi, Armstrong–Reiner–Rhoades),
- ► ...

(Matroid-like) Axiomatizations of convexity:

- antimatroids/convex geometries (Edelman, Jamison),
- convexity for oriented matroids (Las Vergnas, Sturmfels),
- conditional oriented matroids (Bandelt-Chepoi-Knauer),
- lopsided sets (Lawrence)
- ▶ ...

Cones in Arrangements with Symmetries

Contains work from

- arXiv 2104.02740 (*Order*, 2021) joint with Jang Soo Kim and Victor Reiner
- arXiv 2208.04855 (2022) joint with **Christian Stump**

Cones in Arrangements with Symmetries

Contains work from

- arXiv 2104.02740 (*Order*, 2021) joint with Jang Soo Kim and Victor Reiner
- arXiv 2208.04855 (2022) joint with Christian Stump

Theme:

- Poincaré polynomial known for $\mathcal{K} = V$.
- Chamber counts known for all/some cones.
- Question: what are the Poincaré polynomials of these cones?

Arrangements with Symmetries

Hyperplane arrangements and symmetry go hand in hand.

Source: Wikipedia

Galen Dorpalen-Barry (RUB)

Our first example comes from the symmetries of a regular *n*-simplex.

Definition

The **braid** arrangement \mathcal{B}_n is the arrangement with hyperplanes

$$H_{ij} = \{x \in \mathbb{R}^n \mid x_i = x_j\}$$

for all $1 \le i < j \le n$.

 \mathcal{B}_3 has hyperplanes

$$H_{13} = \{ x \in \mathbb{R}^n \mid x_1 = x_3 \}$$

$$H_{23} = \{ x \in \mathbb{R}^n \mid x_2 = x_3 \}$$

$$H_{12} = \{ x \in \mathbb{R}^n \mid x_1 = x_2 \}$$

Our first example comes from the symmetries of a regular *n*-simplex.

Definition

The **braid** arrangement \mathcal{B}_n is the arrangement with hyperplanes

$$H_{ij} = \{x \in \mathbb{R}^n \mid x_i = x_j\}$$

for all $1 \leq i < j \leq n$.

 \mathcal{B}_3 has hyperplanes

$$H_{12} = \{ x \in \mathbb{R}^n \mid x_1 = x_2 \}$$

$$H_{23} = \{ x \in \mathbb{R}^n \mid x_2 = x_3 \}$$

$$H_{13} = \{ x \in \mathbb{R}^n \mid x_1 = x_3 \}$$

• When $\mathcal{K} = V$:

$$\mathsf{Poin}(V,t) = \sum_{\sigma \in \mathfrak{S}_n} t^{n - \#\mathsf{LRmax}(\sigma)}$$

where $\#LRmax(\sigma)$ is the number of left-to-right maxima of $\sigma \in \mathfrak{S}_n$.

• Cones of \mathcal{B}_n can be described by *partially-ordered sets* (posets) on $\{1, \ldots, n\}$, i.e., cones are

$$\mathcal{K}_{P} = \{ x \in \mathbb{R}^{n} \mid x_{i} < x_{j} \Leftrightarrow i <_{P} j \}.$$

See: "Cone-(pre)poset dictionary" of Postnikov-Reiner-Williams.

Question. What is the Poincaré polynomial of a poset cone \mathcal{K}_P ?

A good answer should (a) genearalize the Poincaré polynomial of the full arrangement, and (b) depend only on P, the poset defining \mathcal{K}_P .

Question. What is the Poincaré polynomial of a poset cone \mathcal{K}_P ?

A good answer should (a) genearalize the Poincaré polynomial of the full arrangement, and (b) depend only on P, the poset defining \mathcal{K}_P .

Theorem (DB-Kim-Reiner, '21)

For an arbitrary poset P, there is a map $\psi : \mathcal{R}(\mathcal{K}_P) \to \mathfrak{S}_P^{\pitchfork}$ such that

$$\mathsf{Poin}(\mathcal{K}_{\mathcal{P}},t) = \sum_{\sigma \in \mathsf{LinExt}(\mathcal{P})} t^{n - \#\mathsf{LRmax}(\psi(\sigma))}.$$

(We give this map explicitly in the paper.)

Our second example comes from affine Weyl groups & Lie theory.

Our second example comes from affine Weyl groups & Lie theory.

This example comes from affine Weyl groups, Lie theory.

Definition

The nth (Type A) Shi arrangement Shi_n has hyperplanes

$$H_{ij} = \{x_i = x_j\}$$
 and $H'_{ij} = \{x_i = x_j + 1\}$

for $1 \le i < j \le n$.

This example comes from affine Weyl groups, Lie theory.

Definition

The nth (Type A) Shi arrangement Shi_n has hyperplanes

$$H_{ij} = \{x_i = x_j\}$$
 and $H'_{ij} = \{x_i = x_j + 1\}$

for $1 \le i < j \le n$.

A **Weyl cone** of the Shi arrangement, is a cone which arises as a region of the **reflection subarrangement**

 $\{H_{ij} \mid 1 \le i < j \le n\}.$

One Weyl cone is shaded on the right.

Observation

Weyl cones are in bijection with elements of the symmetric group \mathfrak{S}_n .

Write: $\sigma \mathcal{K}$ for the Weyl cone associated to $\sigma \in \mathfrak{S}_n$.

The $\sigma = 123$ cone is shaded on the left.

In \mathbb{R}^3 , it is the region where $x_1 < x_2 < x_3$.

 $6 \text{ Weyl cones} \leftrightarrow \ \#\mathfrak{S}_3 = 6$

Theorem (Athanasiadis/Shi)

When $\sigma = 12 \cdots n$ is the identity element of \mathfrak{S}_n , the number of regions in $\sigma \mathcal{K}$ is the nth Catalan number C_n .

The $\sigma = 123$ cone is shaded on the left and we can see that there are $C_3 = 5$ regions.

Theorem (Athanasiadis/Shi)

When $\sigma = 12 \cdots n$ is the identity element of \mathfrak{S}_n , the number of regions in $\sigma \mathcal{K}$ is the nth Catalan number C_n .

The $\sigma = 123$ cone is shaded on the left and we can see that there are $C_3 = 5$ regions.

Theorem (DB-Stump, '22)

When $\sigma = 12 \cdots n$ is the identity element of \mathfrak{S}_n , the Whitney numbers of $\sigma \mathcal{K}$ are the Narayana numbers N(n, k).

Theorem (Athanasiadis/Shi)

When $\sigma = 12 \cdots n$ is the identity element of \mathfrak{S}_n , the number of regions in $\sigma \mathcal{K}$ is the nth Catalan number C_n .

The $\sigma = 123$ cone is shaded on the left and we can see that there are $C_3 = 5$ regions.

Theorem (DB-Stump, '22)

When $\sigma = 12 \cdots n$ is the identity element of \mathfrak{S}_n , the Whitney numbers of $\sigma \mathcal{K}$ are the Narayana numbers N(n, k).

This is a special case of one of our results, which describes all intersection posets of all Weyl cones.

For the experts: let $\Delta \subseteq \Phi^+ \subseteq \Phi$ be an irreducible crystallographic root system with choice of simple and positive roots. Let W be the Weyl group associated to Φ .

Theorem (DB–Stump, '22) For all $w \in W$, we have $Poin(Shi(\Phi^+), wC, t) = \sum_{A \in Anti(\Phi^+ \setminus inv(w^{-1}))} t^{\#A}$.

When $W = \mathfrak{S}_n$ and $w = 12 \cdots n$ (the identity permutation): Whitney numbers are the Narayana numbers.

For the experts: let $\Delta \subseteq \Phi^+ \subseteq \Phi$ be an irreducible crystallographic root system with choice of simple and positive roots. Let W be the Weyl group associated to Φ .

Theorem (DB–Stump, '22)

For all $w \in W$, we have

$$\mathsf{Poin}(\mathsf{Shi}(\Phi^+), \mathit{wC}, t) = \sum_{\mathcal{A} \in \mathsf{Anti}(\Phi^+ \setminus \mathit{inv}(w^{-1}))} t^{\#\mathcal{A}}$$

When $W = \mathfrak{S}_n$ and $w = 12 \cdots n$ (the identity permutation): Whitney numbers are the Narayana numbers.

Some comments on the proof:

- First proof: geometry
- Second proof: commutative algebra and a general theorem about cones.

The Varchenko-Gel'fand Ring

Contains work from

- arXiv 2104.02740 (*Journal of Algebra*, 2023)
- arXiv 2208.04855 (to appear in *International Math Research Notices*) joint with **Nick Proudfoot** and **Jayden Wang**

The Varchenko-Gel'fand Ring

Plan

- Describe $H^*(M_3(\mathcal{K});\mathbb{Z})^{-1}$ algebraically using $H^0(V \setminus \bigcup_{H \in \mathcal{A}} H;\mathbb{Z})$.
- By giving different linear bases, get different combinatorial descriptions for the coefficients of Poin(*K*, *t*).

This allows us to give an explicit combinatorial description for the Poincaré polynomial of a Weyl cone.

¹Thm (DB–Proudfoot–Wang, '23): This is the cohomology ring that we mentioned earlier!

The Varchenko-Gel'fand Ring of an Arrangement

The Varchenko-Gel'fand ring of an arrangement ${\mathcal A}$ is

$$H^0(V\setminus \bigcup_{H\in \mathcal{A}}H;\mathbb{Z}).$$

Definition

The **Varchenko-Gel'fand ring** of cone - same thing, but we only consider connected components that intersect \mathcal{K} .

Collection of maps $VG(\mathcal{K}) = \{f : \mathcal{R}(\mathcal{K}) \to \mathbb{Z}\}$ under pointwise addition and multiplication.

The Varchenko-Gel'fand Ring of a Cone

For every cone \mathcal{K} , $VG(\mathcal{K})$ has a \mathbb{Z} -basis of indicator functions of chambers in $\mathcal{R}(\mathcal{K})$, as shown in the example below.

The Varchenko-Gel'fand Ring of a Cone

Pick an orientation of \mathcal{A} . The Varchenko-Gel'fand ring $VG(\mathcal{K})$ of a cone \mathcal{K} is generated (as a \mathbb{Z} -algebra) by Heaviside functions

$$x_{H}(C) = \begin{cases} 1 & \text{if } v \in H^{+} \cap \mathcal{K} \\ 0 & \text{else} \end{cases}$$
 for $C \in \mathcal{R}(\mathcal{K})$

for each hyperplane $H \in \mathcal{L}(\mathcal{K})$.

Define a map $\varphi : \mathbb{Z}[e_H \mid H \in \mathcal{A}] \to VG(\mathcal{K})$ via $e_H \mapsto x_H$.

By the previous observation, this map is surjective.

Define a map $\varphi : \mathbb{Z}[e_H \mid H \in \mathcal{A}] \to VG(\mathcal{K})$ via $e_H \mapsto x_H$.

By the previous observation, this map is surjective.

Theorem (DB, '23) $I_{\mathcal{K}} = \ker \varphi$ has a simple description in terms of the oriented matroid of \mathcal{A} .

- $\mathcal{K} = V$ case was proved by Varchenko and Gel'fand.
- DB-Proudfoot-Wang, '23: extend the presentation to arbitrary convex sets, define M₃(K), conditional oriented matroids (⇒ partial answer to a problem of Bandelt-Chepoi-Knauer).

Presenting the Varchenko-Gel'fand Ring

Let $\mathcal{A} = \{H_1, \ldots, H_n\}$ be a central arrangement and $\mathcal{K} = \bigcap_{i \in W} H_i^+$ for some $W \subseteq [n] := \{1, \ldots, n\}$.

Theorem (DB, '23)

For any graded monomial ordering on $\mathbb{Z}[e_1, ..., e_n]$, $I_{\mathcal{K}}$ has (Gröbner basis)-like^{*} generating set:

$$\prod_{i\in C^+\setminus W} e_i \prod_{j\in C^-} (e_j-1) = \prod_{i\in C\setminus W} e_i - \pm l.o.t.$$

If $W \cap C = \emptyset$, then

$$\prod_{\substack{\in C^+}} e_i \prod_{j \in C^-} (e_j - 1) - \prod_{i \in C^+} (e_i - 1) \prod_{j \in C^-} e_j = \sum_{j \in C} \pm \prod_{i \in C^- \{j\}} e_i \pm l.o.t.$$

* "Gröbner-like" means: leading term of any $f \in I_{\mathcal{K}}$ is divisible by the leading term of some polynomial in the generating set.

Galen Dorpalen-Barry (RUB)

The Hilbert Series of $\operatorname{gr}_{\mathcal{F}}(VG(\mathcal{K}))$

Upshot: If \mathcal{G} is the set of generators from the big theorem and \mathcal{F} is the filtration by degree, then

$$\operatorname{gr}_{\mathcal{F}}(VG(\mathcal{K})) \cong \mathbb{Z}[e_1, \ldots, e_n]/\langle in_{deg}(\mathcal{G}) \rangle$$
.

Theorem (DB, '23)

The Hilbert series of $\operatorname{gr}_{\mathcal{F}}(VG(\mathcal{K}))$ is $\operatorname{Poin}(\mathcal{K}, t)$.

 $\mathcal{K} = V$: proved by Varchenko and Gel'fand.

The Hilbert Series of $\operatorname{gr}_{\mathcal{F}}(VG(\mathcal{K}))$

Upshot: If \mathcal{G} is the set of generators from the big theorem and \mathcal{F} is the filtration by degree, then

$$\operatorname{gr}_{\mathcal{F}}(VG(\mathcal{K})) \cong \mathbb{Z}[e_1, \ldots, e_n]/\langle in_{deg}(\mathcal{G}) \rangle$$
.

Theorem (DB, '23)

The Hilbert series of $\operatorname{gr}_{\mathcal{F}}(VG(\mathcal{K}))$ is $\operatorname{Poin}(\mathcal{K}, t)$.

 $\mathcal{K} = V$: proved by Varchenko and Gel'fand.

Theorem (DB–Proudfoot–Wang, '23) Define $M_3(\mathcal{K})$ and prove that $\operatorname{gr}_{\mathcal{F}}(VG(\mathcal{K})) \cong H^*(M_3(\mathcal{K}); \mathbb{Z})$.

 $\mathcal{K} = V$: proved by Moseley for coefficients in \mathbb{Q} .

The Varchenko-Gel'fand Ring in Action

Theorem (DB, '23)

The Hilbert series of $\operatorname{gr}_{\mathcal{F}}(VG(\mathcal{K}))$ is $\operatorname{Poin}(\mathcal{K}, t)$.

Theorem (Chapoton + Armstrong-Reiner-Rhoades)

There is an antichain basis for the (associated graded of the) Varchenko-Gel'fand ring of the Weyl cone wC.

The Varchenko-Gel'fand Ring in Action

Theorem (DB, '23)

The Hilbert series of $\operatorname{gr}_{\mathcal{F}}(VG(\mathcal{K}))$ is $\operatorname{Poin}(\mathcal{K}, t)$.

Theorem (Chapoton + Armstrong-Reiner-Rhoades)

There is an antichain basis for the (associated graded of the) Varchenko-Gel'fand ring of the Weyl cone wC.

Combining these gives:

Theorem (DB–Stump, '22)
Poin(
$$wC, t$$
) = $\sum_{\substack{\text{antichains} \\ A \subseteq \Phi^+ \setminus inv(w^{-1})}} t^{\#A}$

When w is the identity: implies that Poin(wC, t) is the generating function for Narayana numbers.

Galen Dorpalen-Barry (RUB)

Future Questions

- Scattering Amplitudes. Canonical form of a positive geometry associated to a convex polytope can be computed from the intersections that do NOT intersect a certain closed cone.
- Lattice Point Enumeration. When A is the d-dimensional grid-arrangement, lattice points in Z^d are the 0-dimensional intersections.
- **Real Rootedness**. Connected to *freeness*, *supersolvability*, *Koszulity* for the (associated graded of the) Varchenko-Gel'fand ring.
- Extended ab-index. DB-Maglione-Stump used techniques inspired by *shellings of order complexes* to solve a conjecture motivated by *Igusa zeta functions*. We proved that a certain polynomial depending only on the intersection poset of an arrangement has nonnegative coefficients.

Thank you for your attention!

