Cones of Hyperplane Arrangements

Galen Dorpalen-Barry

contains joint work with Jang Soo Kim, Nick Proudfoot,
Vic Reiner, Christian Stump, and Jayden Wang

Texas A\&M Colloquium
May 1, 2023

```
RUHR
UNIVERSITÄT BOCHUM


\section*{Outline}
(1) Hyperplane Arrangements \& Convex Sets
(2) Examples of Cones
(3) The Varchenko-Gel'fand Ring

\section*{What is an arrangement of hyperplanes?}

Let \(V \cong \mathbb{R}^{d}\) be a real vector space.
- A hyperplane is an affine linear subspace of codimension 1.
- A collection of finitely-many (distinct) hyperplanes is an arrangement.


\section*{Why arrangements of hyperplanes?}
- Linear optimization, linear programming
- Graph theory
- Matroid and oriented matroid theory
- Polytopes
- ...

\section*{Example (Mathematical Physics)}

Recently the residual arrangement of a convex polytope has been useful in computing canonical forms associated to positive geometries.
(Gaetz, Kohn-Ranestad, Lam)


\section*{What kind of data could we try to compute?}
\(\mathcal{A}:\) (central) arrangement in \(\mathbb{R}^{d}\)
\(M_{2}:=(V \otimes \mathbb{C}) \backslash \bigcup_{H \in \mathcal{A}}(H \otimes \mathbb{C})\), and
\(\operatorname{Poin}(\mathcal{A}, t):=\sum_{d \geq 0} \operatorname{rank}_{\mathbb{Z}}\left(H^{d}\left(M_{2} ; \mathbb{Z}\right)\right) t^{d}\).

\section*{What kind of data could we try to compute?}
\(\mathcal{A}:(\) central \()\) arrangement in \(\mathbb{R}^{d}\) \(M_{2}:=(V \otimes \mathbb{C}) \backslash \bigcup_{H \in \mathcal{A}}(H \otimes \mathbb{C})\), and
\[
\operatorname{Poin}(\mathcal{A}, t):=\sum_{d \geq 0} \operatorname{rank}_{\mathbb{Z}}\left(H^{d}\left(M_{2} ; \mathbb{Z}\right)\right) t^{d}
\]

Work of Arnol'd, Brieskorn, Orlik-Solomon shows
\[
\operatorname{Poin}(\mathcal{A}, t)=\sum_{X \in \mathcal{L}(\mathcal{A})}|\mu(V, X)| t^{\operatorname{codim}(X)}
\]
where \(\mathcal{L}(\mathcal{A})\) is the set of intersections of \(\mathcal{A}\) and \(\mu(-,-)\) is the Möbius function of \(\mathcal{L}(\mathcal{A})\) partially ordered by reverse inclusion.

This arrangement has 4 regions and the set of intersections is
\(\left\{\mathbb{R}^{3}, H, H^{\prime}, H \cap H^{\prime}\right\}\)


\section*{What kind of data could we try to compute?}
\(\mathcal{A}:(\) central \()\) arrangement in \(\mathbb{R}^{d}\) \(M_{3}:=V \otimes \mathbb{R}^{3} \backslash \bigcup_{H \in \mathcal{A}}\left(H \otimes \mathbb{R}^{3}\right)\), and
\[
\operatorname{Poin}(\mathcal{A}, t)=\sum_{d \geq 0} \operatorname{rank}_{\mathbb{Z}}\left(H^{d}\left(M_{3} ; \mathbb{Z}\right)\right) t^{d}
\]

Work of Varchenko-Gel'fand and Moseley shows
\[
\operatorname{Poin}(\mathcal{A}, t)=\sum_{X \in \mathcal{L}(\mathcal{A})}|\mu(V, X)| t^{\operatorname{codim}(X)}
\]
where \(\mathcal{L}(\mathcal{A})\) is the set of intersections of \(\mathcal{A}\) and \(\mu(-,-)\) is the Möbius function of \(\mathcal{L}(\mathcal{A})\) partially ordered by reverse inclusion.

This arrangement has 4 regions and the set of intersections is
\(\left\{\mathbb{R}^{3}, H, H^{\prime}, H \cap H^{\prime}\right\}\)

\section*{What kind of data could we try to compute?}
\(\operatorname{Poin}(\mathcal{A}, t)\) is related to...
- Number of regions/bounded of the arrangement (Zaslavsky's theorem)
- Tutte polynomial,
- characteristic polynomial,
- chromatic polynomial (of a graphic arrangement),
- Orlik-Solomon algebra,
- ...

This arrangement has 4 regions and the set of intersections is


\section*{Cones of Hyperplane Arrangements}
- A cone \(\mathcal{K}\) of an arrangement \(\mathcal{A}\) is an intersection of (open) halfspaces defined by some of the hyperplanes of \(\mathcal{A}\).
- Cones unify the theory of central and affine arrangements while generalizing both.


\footnotetext{
The second example cannot be realized as an (affine) hyperplane arrangement.
}

\section*{The Poincaré Polynomial of a Cone}

The Poincaré polynomial of a cone \(\mathcal{K}\) is
\[
\operatorname{Poin}(\mathcal{K}, t)=\sum_{X \in \mathcal{L}(\mathcal{K})}|\mu(V, X)| t^{\operatorname{codim}(X)}
\]
where \(\mathcal{L}(\mathcal{K})\) is the set of intersections \(X\) of \(\mathcal{A}\) such that \(X \cap \mathcal{K} \neq \emptyset\).

\section*{The Poincaré Polynomial of a Cone}

The Poincaré polynomial of a cone \(\mathcal{K}\) is
\[
\operatorname{Poin}(\mathcal{K}, t)=\sum_{X \in \mathcal{L}(\mathcal{K})}|\mu(V, X)| t^{\operatorname{codim}(X)}
\]
where \(\mathcal{L}(\mathcal{K})\) is the set of intersections \(X\) of \(\mathcal{A}\) such that \(X \cap \mathcal{K} \neq \emptyset\).

This is a reasonable thing to do:
Theorem (DB-Proudfoot-Wang, '23)
There exists a topological space generalizing \(M_{3}\) whose cohomology ring has Hilbert-Poincaré series is Poin \((\mathcal{K}, t)\).

\section*{Example}

Below (left) is an example of a cone in an affine arrangement, together with its intersection poset (right)


\section*{Example}

Below (left) is an example of a cone in an affine arrangement, together with its intersection poset (right)


The Poincaré polynomial of this cone is \(\operatorname{Poin}(\mathcal{K}, t)=1+3 t+t^{2}\).

\section*{Example}


Have: \(\operatorname{Poin}(\mathcal{K}, t)=1+3 t+t^{2}\).
\[
\operatorname{Poin}(\mathcal{K}, 1)=5=\frac{1}{3+1}\binom{2 \cdot 3}{3}
\]
\(=\#\left\{\right.\) increasing parking functions \(\left.\left(c_{1}, c_{2}, c_{3}\right)\right\}\)
\(=\#\{\) Dyck paths of length 6\(\}\)
\(=\#\left\{231\right.\)-avoiding permutations in \(\left.\mathfrak{S}_{3}\right\}\)
\(=3\) rd Catalan number
Special case of Athanasiadis/Shi.

\section*{Example}

Have: \(\operatorname{Poin}(\mathcal{K}, t)=1+3 t+t^{2}\).
Moreover, the coefficients are the \(n=3\)
Narayana numbers
\[
N(n, k)=\frac{1}{n}\binom{n}{k}\binom{n}{k-1} .
\]

Special case of (details later):

\section*{Theorem (DB-Stump, '22)}

For the Shi arrangement associated to \(\Phi^{+}\) Poin \((e C, t)\) has coefficients: the Narayana numbers.

\section*{Big Picture}
(1) Cones are more general than hyperplane arrangements. The previous example is a pair which cannot be realized as an (affine) hyperplane arrangement.
(2) Cones arise naturally in mathematics (and beyond). We'll look at two examples coming from Coxeter groups.
(3) The cone-perspective helps solve problems. We'll illustrate this with a numerical problem concerning the Varchenko-Gel'fand ring.

\section*{The interaction between convexity and hyperplane arrangements is well-studied...}
(1) Cones of Hyperplane Arrangements
- Cones and Lunes (Aguiar-Mahajan),
- Convex collections of regions (Bidigare-Hanlon-Rockmore, Brown),
- Poset cones in the Braid arrangement (Postnikov-Reiner-Williams, Ardila-Sanchez)
- Weyl cones for Shi and Ish arrangements (Athanasiadis, Shi, Armstrong-Reiner-Rhoades),
(2) (Matroid-like) Axiomatizations of convexity:
- antimatroids/convex geometries (Edelman, Jamison),
- convexity for oriented matroids (Las Vergnas, Sturmfels),
- conditional oriented matroids (Bandelt-Chepoi-Knauer),
- lopsided sets (Lawrence)
- ...

\section*{Cones in Arrangements with Symmetries}

Contains work from
- arXiv 2104.02740 (Order, 2021) joint with Jang Soo Kim and Victor Reiner
- arXiv 2208.04855 (2022) joint with Christian Stump

\section*{Cones in Arrangements with Symmetries}

Contains work from
- arXiv 2104.02740 (Order, 2021) joint with Jang Soo Kim and Victor Reiner
- arXiv 2208.04855 (2022) joint with Christian Stump

Theme:
- Poincaré polynomial known for \(\mathcal{K}=V\).
- Chamber counts known for all/some cones.
- Question: what are the Poincaré polynomials of these cones?

\section*{Arrangements with Symmetries}

Hyperplane arrangements and symmetry go hand in hand.


\section*{Arrangements with Symmetries (Example A)}

Our first example comes from the symmetries of a regular \(n\)-simplex.

\section*{Definition}

The braid arrangement \(\mathcal{B}_{n}\) is the arrangement with hyperplanes
\[
H_{i j}=\left\{x \in \mathbb{R}^{n} \mid x_{i}=x_{j}\right\}
\]
for all \(1 \leq i<j \leq n\).
\(\mathcal{B}_{3}\) has hyperplanes
\[
\begin{aligned}
H_{13} & =\left\{x \in \mathbb{R}^{n} \mid x_{1}=x_{3}\right\} \\
H_{23} & =\left\{x \in \mathbb{R}^{n} \mid x_{2}=x_{3}\right\} \\
H_{12} & =\left\{x \in \mathbb{R}^{n} \mid x_{1}=x_{2}\right\}
\end{aligned}
\]


\section*{Arrangements with Symmetries (Example A)}

Our first example comes from the symmetries of a regular \(n\)-simplex.

\section*{Definition}

The braid arrangement \(\mathcal{B}_{n}\) is the arrangement with hyperplanes
\[
H_{i j}=\left\{x \in \mathbb{R}^{n} \mid x_{i}=x_{j}\right\}
\]
for all \(1 \leq i<j \leq n\).
\(\mathcal{B}_{3}\) has hyperplanes
\[
\begin{aligned}
H_{12} & =\left\{x \in \mathbb{R}^{n} \mid x_{1}=x_{2}\right\} \\
H_{23} & =\left\{x \in \mathbb{R}^{n} \mid x_{2}=x_{3}\right\} \\
H_{13} & =\left\{x \in \mathbb{R}^{n} \mid x_{1}=x_{3}\right\}
\end{aligned}
\]


\section*{Arrangements with Symmetries (Example A)}
- When \(\mathcal{K}=V\) :
\[
\operatorname{Poin}(V, t)=\sum_{\sigma \in \mathfrak{S}_{n}} t^{n-\# \operatorname{LRmax}(\sigma)}
\]
where \(\# \operatorname{LRmax}(\sigma)\) is the number of left-to-right maxima of \(\sigma \in \mathfrak{S}_{n}\).
- Cones of \(\mathcal{B}_{n}\) can be described by partially-ordered sets (posets) on \(\{1, \ldots, n\}\), i.e., cones are
\[
\mathcal{K}_{P}=\left\{x \in \mathbb{R}^{n} \mid x_{i}<x_{j} \Leftrightarrow i<p j\right\} .
\]

See: "Cone-(pre)poset dictionary" of Postnikov-Reiner-Williams.

\section*{Arrangements with Symmetries (Example A)}

Question. What is the Poincaré polynomial of a poset cone \(\mathcal{K}_{P}\) ?
A good answer should (a) genearalize the Poincaré polynomial of the full arrangement, and (b) depend only on \(P\), the poset defining \(\mathcal{K}_{P}\).

\section*{Arrangements with Symmetries (Example A)}

Question. What is the Poincaré polynomial of a poset cone \(\mathcal{K}_{P}\) ?
A good answer should (a) genearalize the Poincaré polynomial of the full arrangement, and (b) depend only on \(P\), the poset defining \(\mathcal{K}_{P}\).

Theorem (DB-Kim-Reiner, '21)
For an arbitrary poset \(P\), there is a map \(\psi: \mathcal{R}\left(\mathcal{K}_{P}\right) \rightarrow \mathfrak{S}_{P}^{\pitchfork}\) such that
\[
\operatorname{Poin}\left(\mathcal{K}_{P}, t\right)=\sum_{\sigma \in \operatorname{LinExt}(P)} t^{n-\# \operatorname{LRmax}(\psi(\sigma))} .
\]
(We give this map explicitly in the paper.)

\section*{Arrangements with Symmetries (Example B)}

Our second example comes from affine Weyl groups \& Lie theory.


\section*{Arrangements with Symmetries (Example B)}

Our second example comes from affine Weyl groups \& Lie theory.


\section*{Arrangements with Symmetries (Example B)}

This example comes from affine Weyl groups, Lie theory.

\section*{Definition}

The nth (Type A) Shi arrangement Shi \(_{n}\) has hyperplanes
\[
H_{i j}=\left\{x_{i}=x_{j}\right\} \quad \text { and } \quad H_{i j}^{\prime}=\left\{x_{i}=x_{j}+1\right\}
\]
for \(1 \leq i<j \leq n\).

\section*{Arrangements with Symmetries (Example B)}

This example comes from affine Weyl groups, Lie theory.

\section*{Definition}

The nth (Type A) Shi arrangement Shi \(_{n}\) has hyperplanes
\[
H_{i j}=\left\{x_{i}=x_{j}\right\} \quad \text { and } \quad H_{i j}^{\prime}=\left\{x_{i}=x_{j}+1\right\}
\]
for \(1 \leq i<j \leq n\).

A Weyl cone of the Shi arrangement, is a cone which arises as a region of the reflection subarrangement
\[
\left\{H_{i j} \mid 1 \leq i<j \leq n\right\} .
\]

One Weyl cone is shaded on the right.


\section*{Arrangements with Symmetries (Example B)}

\section*{Observation}

Weyl cones are in bijection with elements of the symmetric group \(\mathfrak{S}_{n}\).

Write: \(\sigma \mathcal{K}\) for the Weyl cone associated to \(\sigma \in \mathfrak{S}_{n}\).

The \(\sigma=123\) cone is shaded on the left.
\(\ln \mathbb{R}^{3}\), it is the region where \(x_{1}<x_{2}<x_{3}\).
6 Weyl cones \(\leftrightarrow \quad \# \mathfrak{S}_{3}=6\)


\section*{Arrangements with Symmetries (Example B)}

Theorem (Athanasiadis/Shi)
When \(\sigma=12 \cdots n\) is the identity element of \(\mathfrak{S}_{n}\), the number of regions in \(\sigma \mathcal{K}\) is the nth Catalan number \(C_{n}\).

The \(\sigma=123\) cone is shaded on the left and we can see that there are \(C_{3}=5\) regions.

\section*{Arrangements with Symmetries (Example B)}

Theorem (Athanasiadis/Shi)
When \(\sigma=12 \cdots n\) is the identity element of \(\mathfrak{S}_{n}\), the number of regions in \(\sigma \mathcal{K}\) is the nth Catalan number \(C_{n}\).

The \(\sigma=123\) cone is shaded on the left and we can see that there are \(C_{3}=5\) regions.

Theorem (DB-Stump, '22)
When \(\sigma=12 \cdots n\) is the identity element of \(\mathfrak{S}_{n}\), the Whitney numbers of \(\sigma \mathcal{K}\) are the Narayana numbers \(N(n, k)\).

\section*{Arrangements with Symmetries (Example B)}

\section*{Theorem (Athanasiadis/Shi)}

When \(\sigma=12 \cdots n\) is the identity element of \(\mathfrak{S}_{n}\), the number of regions in \(\sigma \mathcal{K}\) is the nth Catalan number \(C_{n}\).

The \(\sigma=123\) cone is shaded on the left and we can see that there are \(C_{3}=5\) regions.

Theorem (DB-Stump, '22)
When \(\sigma=12 \cdots n\) is the identity element of \(\mathfrak{S}_{n}\), the Whitney numbers of \(\sigma \mathcal{K}\) are the Narayana numbers \(N(n, k)\).

This is a special case of one of our results, which describes all intersection posets of all Weyl cones.

\section*{Arrangements with Symmetries (Example B)}

For the experts: let \(\Delta \subseteq \Phi^{+} \subseteq \Phi\) be an irreducible crystallographic root system with choice of simple and positive roots. Let \(W\) be the Weyl group associated to \(\Phi\).

Theorem (DB-Stump, '22)
For all \(w \in W\), we have
\[
\operatorname{Poin}\left(\operatorname{Shi}\left(\Phi^{+}\right), w C, t\right)=\sum_{A \in \operatorname{Anti}\left(\Phi+\backslash \operatorname{inv}\left(w^{-1}\right)\right)} t^{\# A} .
\]

When \(W=\mathfrak{S}_{n}\) and \(w=12 \cdots n\) (the identity permutation): Whitney numbers are the Narayana numbers.

\section*{Arrangements with Symmetries (Example B)}

For the experts: let \(\Delta \subseteq \Phi^{+} \subseteq \Phi\) be an irreducible crystallographic root system with choice of simple and positive roots. Let \(W\) be the Weyl group associated to \(\Phi\).

Theorem (DB-Stump, '22)
For all \(w \in W\), we have
\[
\operatorname{Poin}\left(\operatorname{Shi}\left(\Phi^{+}\right), w C, t\right)=\sum_{A \in \operatorname{Anti}\left(\Phi+\backslash \operatorname{inv}\left(w^{-1}\right)\right)} t^{\# A} .
\]

When \(W=\mathfrak{S}_{n}\) and \(w=12 \cdots n\) (the identity permutation): Whitney numbers are the Narayana numbers.

Some comments on the proof:
- First proof: geometry
- Second proof: commutative algebra and a general theorem about cones.

\section*{The Varchenko-Gel'fand Ring}

\section*{Contains work from}
- arXiv 2104.02740 (Journal of Algebra, 2023)
- arXiv 2208.04855 (to appear in International Math Research Notices) joint with Nick Proudfoot and Jayden Wang

\section*{The Varchenko-Gel'fand Ring}

\section*{Plan}
(1) Describe \(H^{*}\left(M_{3}(\mathcal{K}) ; \mathbb{Z}\right)^{1}\) algebraically using \(H^{0}\left(V \backslash \bigcup_{H \in \mathcal{A}} H ; \mathbb{Z}\right)\).
(2) By giving different linear bases, get different combinatorial descriptions for the coefficients of \(\operatorname{Poin}(\mathcal{K}, t)\).

This allows us to give an explicit combinatorial description for the Poincaré polynomial of a Weyl cone.
\({ }^{1}\) Thm (DB-Proudfoot-Wang, '23): This is the cohomology ring that we mentioned earlier!

\section*{The Varchenko-Gel'fand Ring of an Arrangement}

The Varchenko-Gel'fand ring of an arrangement \(\mathcal{A}\) is
\[
H^{0}\left(V \backslash \bigcup_{H \in \mathcal{A}} H ; \mathbb{Z}\right)
\]

\section*{Definition \\ The Varchenko-Gel'fand ring of cone - same thing, but we only consider connected components that intersect \(\mathcal{K}\).}

Collection of maps \(V G(\mathcal{K})=\{f: \mathcal{R}(\mathcal{K}) \rightarrow \mathbb{Z}\}\) under pointwise addition and multiplication.

\section*{The Varchenko-Gel'fand Ring of a Cone}

For every cone \(\mathcal{K}, V G(\mathcal{K})\) has a \(\mathbb{Z}\)-basis of indicator functions of chambers in \(\mathcal{R}(\mathcal{K})\), as shown in the example below.


\section*{The Varchenko-Gel'fand Ring of a Cone}

Pick an orientation of \(\mathcal{A}\). The Varchenko-Gel'fand ring \(\operatorname{VG}(\mathcal{K})\) of a cone \(\mathcal{K}\) is generated (as a \(\mathbb{Z}\)-algebra) by Heaviside functions
\[
x_{H}(C)=\left\{\begin{array}{ll}
1 & \text { if } v \in H^{+} \cap \mathcal{K} \\
0 & \text { else }
\end{array} \quad \text { for } C \in \mathcal{R}(\mathcal{K})\right.
\]
for each hyperplane \(H \in \mathcal{L}(\mathcal{K})\).


\section*{Define a map \(\varphi: \mathbb{Z}\left[e_{H} \mid H \in \mathcal{A}\right] \rightarrow V G(\mathcal{K})\) via \(e_{H} \mapsto x_{H}\).}

By the previous observation, this map is surjective.

\section*{Define a map \(\varphi: \mathbb{Z}\left[e_{H} \mid H \in \mathcal{A}\right] \rightarrow V G(\mathcal{K})\) via \(e_{H} \mapsto x_{H}\).}

By the previous observation, this map is surjective.
Theorem (DB, '23)
\(I_{\mathcal{K}}=\operatorname{ker} \varphi\) has a simple description in terms of the oriented matroid of \(\mathcal{A}\).
- \(\mathcal{K}=V\) case was proved by Varchenko and Gel'fand.
- DB-Proudfoot-Wang, '23: extend the presentation to arbitrary convex sets, define \(M_{3}(\mathcal{K})\), conditional oriented matroids \((\Rightarrow\) partial answer to a problem of Bandelt-Chepoi-Knauer).

\section*{Presenting the Varchenko-Gel'fand Ring}

Let \(\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}\) be a central arrangement and \(\mathcal{K}=\bigcap_{i \in W} H_{i}^{+}\)for some \(W \subseteq[n]:=\{1, \ldots, n\}\).

\section*{Theorem (DB, '23)}

For any graded monomial ordering on \(\mathbb{Z}\left[e_{1}, \ldots, e_{n}\right]\), \(\mathcal{I}_{\mathcal{K}}\) has (Gröbner basis)-like* generating set:
(1) \(e_{i}^{2}-e_{i}\) for \(i \in[n]\),
(2) \(e_{i}-1\) for \(i \in[n]\) such that \(i \in W\)
(3) Let \(C=C^{+} \cup C^{-}\)be a signed circuit. If \(W \cap C^{ \pm} \neq \varnothing\) but \(W \cap C^{\mp}=\varnothing\), then
\[
\prod_{i \in c^{+} \backslash w} e_{i} \prod_{j \in C^{-}}\left(e_{j}-1\right)=\prod_{i \in c \backslash w} e_{i}- \pm 1.0 . t .
\]

If \(W \cap C=\varnothing\), then
\[
\prod_{i \in C^{+}} e_{i} \prod_{j \in C^{-}}\left(e_{j}-1\right)-\prod_{i \in C^{+}}\left(e_{i}-1\right) \prod_{j \in C^{-}} e_{j}=\sum_{j \in C} \pm \prod_{i \in C-\{j\}} e_{i} \pm \text { l.o.t. }
\]
* "Gröbner-like" means: leading term of any \(f \in \mathcal{I}_{\mathcal{K}}\) is divisible by the leading term of some polynomial in the generating set.

\section*{The Hilbert Series of \(\operatorname{gr}_{\mathcal{F}}(V G(\mathcal{K}))\)}

Upshot: If \(\mathcal{G}\) is the set of generators from the big theorem and \(\mathcal{F}\) is the filtration by degree, then
\[
\operatorname{gr}_{\mathcal{F}}(V G(\mathcal{K})) \cong \mathbb{Z}\left[e_{1}, \ldots, e_{n}\right] /\left\langle i n_{\operatorname{deg}}(\mathcal{G})\right\rangle
\]

\section*{Theorem (DB, '23)}

The Hilbert series of \(\operatorname{gr}_{\mathcal{F}}(V G(\mathcal{K}))\) is \(\operatorname{Poin}(\mathcal{K}, t)\).
\(\mathcal{K}=V\) : proved by Varchenko and Gel'fand.

\section*{The Hilbert Series of \(\operatorname{gr}_{\mathcal{F}}(V G(\mathcal{K}))\)}

Upshot: If \(\mathcal{G}\) is the set of generators from the big theorem and \(\mathcal{F}\) is the filtration by degree, then
\[
\operatorname{gr}_{\mathcal{F}}(V G(\mathcal{K})) \cong \mathbb{Z}\left[e_{1}, \ldots, e_{n}\right] /\left\langle i n_{\operatorname{deg}}(\mathcal{G})\right\rangle
\]

\section*{Theorem (DB, '23)}

The Hilbert series of \(\operatorname{gr}_{\mathcal{F}}(V G(\mathcal{K}))\) is \(\operatorname{Poin}(\mathcal{K}, t)\).
\(\mathcal{K}=V\) : proved by Varchenko and Gel'fand.
```

Theorem (DB-Proudfoot-Wang, '23)
Define $M_{3}(\mathcal{K})$ and prove that $\operatorname{gr}_{\mathcal{F}}(V G(\mathcal{K})) \cong H^{*}\left(M_{3}(\mathcal{K}) ; \mathbb{Z}\right)$.

```
\(\mathcal{K}=V\) : proved by Moseley for coefficients in \(\mathbb{Q}\).

\section*{The Varchenko-Gel'fand Ring in Action}

Theorem (DB, '23)
The Hilbert series of \(\operatorname{gr}_{\mathcal{F}}(V G(\mathcal{K}))\) is \(\operatorname{Poin}(\mathcal{K}, t)\).

Theorem (Chapoton + Armstrong-Reiner-Rhoades)
There is an antichain basis for the (associated graded of the) Varchenko-Gel'fand ring of the Weyl cone wC.

\section*{The Varchenko-Gel'fand Ring in Action}

Theorem (DB, '23)
The Hilbert series of \(\operatorname{gr}_{\mathcal{F}}(V G(\mathcal{K}))\) is \(\operatorname{Poin}(\mathcal{K}, t)\).
Theorem (Chapoton + Armstrong-Reiner-Rhoades)
There is an antichain basis for the (associated graded of the)
Varchenko-Gel'fand ring of the Weyl cone wC.
Combining these gives:
Theorem (DB-Stump, '22)
\[
\operatorname{Poin}(w C, t)=\sum_{\substack{\text { antichains } \\ A \subseteq \Phi^{+} \backslash i n v\left(w^{-1}\right)}} t^{\# A}
\]

When \(w\) is the identity: implies that \(\operatorname{Poin}(w C, t)\) is the generating function for Narayana numbers.

\section*{Future Questions}
- Scattering Amplitudes. Canonical form of a positive geometry associated to a convex polytope can be computed from the intersections that do NOT intersect a certain closed cone.
- Lattice Point Enumeration. When \(\mathcal{A}\) is the \(d\)-dimensional grid-arrangement, lattice points in \(\mathbb{Z}^{d}\) are the 0-dimensional intersections.
- Real Rootedness. Connected to freeness, supersolvability, Koszulity for the (associated graded of the) Varchenko-Gel'fand ring.
- Extended ab-index. DB-Maglione-Stump used techniques inspired by shellings of order complexes to solve a conjecture motivated by Igusa zeta functions. We proved that a certain polynomial depending only on the intersection poset of an arrangement has nonnegative coefficients.

Thank you for your attention!
```

