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Arrangements of Hyperplanes

A hyperplane is an affine linear
subspace of codimension 1.

A collection of finitely-many
(distinct) hyperplanes is an
arrangement.

The following arrangement has 6
regions and the set of intersections is

R2, H1,H2,H3,H1 ∩ H2 ∩ H3

H1

H3

H2
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(distinct) hyperplanes is an
arrangement.

The following arrangement has 6
regions and the set of intersections is

R2, H1,H2,H3,H1 ∩ H2 ∩ H3

H1

H3

H2

Today we’ll focus on

regions (= open, connected components of the complement), and

intersections (= nonempty intersections of some of the hyperplanes).
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Poset of Intersections

Let A be an arrangement in V ∼= Rd

with intersections L(A).

The elements of L(A) form a
poset under reverse inclusion.

A theorem of Zaslavsky relates
the Möbius function values of
lower intervals [V ,X ] ⊆ L(A)
to the number of regions of the
arrangement.

H1

H3

H2

The poset of intersections is

R2

H1 H2 H3

H1 ∩ H2 ∩ H3

+1

−1 −1 −1

+2
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Zaslavsky’s Theorem
Let A be an arrangement with regions R(A) and intersections L(A).

Theorem (Zaslavsky)

#R(A) =
∑

X∈L(A) |µ(V ,X )|

Note: Zaslavsky’s theorem has two parts, depending on whether or not
you include the absolute value signs.

H1

H3

H2

R2

H1 H2 H3

H1 ∩ H2 ∩ H3

+1

−1 −1 −1

+2

Zaslavsky’s theorem says: 1 + 3(1) + 2 = 6.
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The Poincaré Polynomial
Let A be an arrangement in Rd with regions R(A) and intersections L(A).
Define the Poincaré polynomial of A by

Poin(A, t) =
∑

X∈L(A)

|µ(V ,X )|tcodim(X ).

Its coefficients are the Whitney numbers of the arrangement.

H1

H3

H2

R2

H1 H2 H3

H1 ∩ H2 ∩ H3

+1

−1 −1 −1

+2

The Poincaré polynomial of this arrangement is Poin(A, t) = 1 + 3t + 2t2.
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Cones of Hyperplane Arrangements

A cone K of an arrangement A is an intersection of (open) halfspaces
defined by some of the hyperplanes of A.

Cones are interesting in the theory of arrangements, as they unify the
theory of central and affine arrangements while generalizing both.

Here are two examples of cones.
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Regions and Intersections for a Cone

Let A be an arrangement in V with regions R(A) and intersections L(A),
and let C be a cone.

The regions of C are the regions of the
arrangement contained in C, i.e.

R(C) = {R ∈ R(A) | R ⊆ C}

The intersections of C are the
intersections X ∈ L(A) which cut
through the cone, i.e.,

L(C) = {X ∈ L(A) | X ∩ C 6= ∅}.

H1

H3

H2

V

H2
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Zaslavsky’s Theorem for Cones

Let A be an arrangement with regions R(A) and intersections L(A), and
let C be a cone of that arrangement.

Theorem (Zaslavsky)

#R(C) =
∑

X∈L(C) |µ(V ,X )|

H1

H3

H2

V

H2

+1

−1

Zaslavsky’s theorem says: 1 + 1(1) = 2.
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The Poincaré Polynomial of a Cone

Define the Poincaré polynomial of a cone C in an arrangement by

Poin(C, t) =
∑

X∈L(C)

|µ(V ,X )|tcodim(X ).

Its coefficients are the Whitney numbers of the cone.

H1

H3

H2

V

H2

+1

−1

The Poincaré polynomial of this cone is Poin(C, t) = 1 + 1t.
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Example: A Cone in an Affine Arrangement
Below (left) is an example of a cone in an affine arrangement, together
with its intersection poset (right)

H3

H1

H2

V

H1 H2 H3

H1 ∩ H2

+1

−1 −1 −1

+1

The Poincaré polynomial of this cone is Poin(C, t) = 1 + 3t + t2.
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Example Cont’d

H3

H1

H2

On the previous slide, we saw that
Poin(C, t) = 1 + 3t + t2.

The coefficients are the n = 3
Narayana numbers

N(n, k) =
1

n

(
n

k

)(
n

k − 1

)
,

which refine the Catalan numbers

Cn =
1

n + 1

(
2n

n

)
.

This isn’t a coincidence!
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Shi Arrangements

based on joint work with Christian Stump

For the experts: I’m going to tell you a “Type A” story, but this will hold
for any irreducible crystallographic root system.
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What is the Shi arrangement?
The (Type A) Shi arrangement has hyperplanes

Hi ,j ,k = {x ∈ Rn | xi − xj = k}

for i < j ∈ [n] := {1, 2, . . . , n} and k = 0, 1.

Below is an affine slice of the Shi arrangement for n = 3.

A Weyl cone of the Shi arrangement, is a
cone which arises as a region of the
reflection subarrangement

{Hi ,j ,0 | i < j ∈ Rn}.

One Weyl cone is shaded on the left.
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Weyl Cones
The (Type A) Shi arrangement has hyperplanes

Hi ,j ,k = {x ∈ Rn | xi − xj = k}

for i < j ∈ [n] := {1, 2, . . . , n} and k = 0, 1.

Below is an affine slice of the Shi arrangement for n = 3.

A Weyl cone of the Shi arrangement, is a
cone which arises as a region of the
reflection subarrangement

{Hi ,j ,0 | i < j ∈ [n]}.

One Weyl cone is shaded on the right.
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A Correspondence Between Cones and Permutations

On the previous slide, saw that a Weyl cone of the Shi arrangement is a
cone which arises as a region of the reflection subarrangement whose
hyperplanes are

Hi ,k,0 = {x ∈ Rn | xi − xj = 0}.

The regions σC of this arrangement are in
bijection with elements of the symmetric
group σ ∈ Sn via

x ∈ σC ⇐⇒ xσ1 < xσ2 < · · · < xσn

The σ = 231 cone is shaded on the left.
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On the previous slide, saw that a Weyl cone of the Shi arrangement is a
cone which arises as a region of the reflection subarrangement whose
hyperplanes are
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The regions σC of this arrangement are in
bijection with elements of the symmetric
group σ ∈ Sn via
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Catalan Numbers and Region Counts

Theorem (Athanasiadis)

When σ = 12 · · · n is the identity element of Sn, the number of regions in
σC is the nth Catalan number Cn.

The σ = 123 cone is shaded on the left and
we can see that there are C3 = 5 regions.

Theorem ((DB)S, 22+)

When σ = 12 · · · n is the identity element of
Sn, the Whitney numbers of σC are the
Narayana numbers N(n, k).

This is a special case of one of our results,
which describes all intersection posets of all
Weyl cones. Unfortunately it requires more
Coxeter theory than we have time for today.

Galen Dorpalen-Barry (RUB) Shi arrangements April 21, 2023 22 / 38



Catalan Numbers and Region Counts

Theorem (Athanasiadis)

When σ = 12 · · · n is the identity element of Sn, the number of regions in
σC is the nth Catalan number Cn.

The σ = 123 cone is shaded on the left and
we can see that there are C3 = 5 regions.

Theorem ((DB)S, 22+)

When σ = 12 · · · n is the identity element of
Sn, the Whitney numbers of σC are the
Narayana numbers N(n, k).

This is a special case of one of our results,
which describes all intersection posets of all
Weyl cones. Unfortunately it requires more
Coxeter theory than we have time for today.

Galen Dorpalen-Barry (RUB) Shi arrangements April 21, 2023 22 / 38



Catalan Numbers and Region Counts

Theorem (Athanasiadis)

When σ = 12 · · · n is the identity element of Sn, the number of regions in
σC is the nth Catalan number Cn.

The σ = 123 cone is shaded on the left and
we can see that there are C3 = 5 regions.

Theorem ((DB)S, 22+)

When σ = 12 · · · n is the identity element of
Sn, the Whitney numbers of σC are the
Narayana numbers N(n, k).

This is a special case of one of our results,
which describes all intersection posets of all
Weyl cones. Unfortunately it requires more
Coxeter theory than we have time for today.

Galen Dorpalen-Barry (RUB) Shi arrangements April 21, 2023 22 / 38



A Note on the Proof

The proof of our theorem uses “elemetentary” techniques and proves
something stronger.

The general theorem describes the poset of intersections via the
antichains of a certain poset Eσ, which specializes to the root poset
when σ is the identity.

The numerical statement can be proved using commutative algebra...
and that’s what I want to tell you about for the remainder of this talk!
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Two Rings

Warning: This section uses several terms that I haven’t defined. Some
useful references:

Section 1 of “Gröbner Bases and Convex Polytopes” by Sturmfels

Chapter 2 of “Ideals, Varieties, and Algorithms” by Cox, Little,
O’Shea

The (very minor) extension to polynomial rings over Z is given in
arXiv:2104.02740.
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A Ring from Order Ideals

Let P be a poset and J(P) its collection of order ideals (= down-sets).

Definition

The free poset ring of P is the set of maps f : J(P)→ Z with pointwise
addition and multiplication.

α β

α + β

2α + β

This poset has 6 antichains ∅, {α}, {β}, {α, β}, {α + β}, and {2α + β}.
An element of the free poset ring is an assignment of an integer weight to
each of these order ideals.
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A Ring from Order Ideals

Let FP(P) be the free poset ring of P.

α β

α + β

2α + β

If I contains an
element in the shaded
region, then
xα+β(I ) = 1.

Theorem

This ring is generated by Heaviside functions, i.e.

xi (I ) =

{
1 if i ∈ I

0 else

for i ∈ P and I ∈ J(P). In particular, the following
map is surjective

Z[ei | i ∈ P]→ FP(P)

ei 7→ xi

and its kernel contains G = {ei (1− ej) | i ≤P j}.
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A Ring from Order Ideals

Let FP(P) be the free poset ring of P.

α β

α + β

2α + β

Its not hard to see
why
(1− xα+β)x2α+β = 0

Theorem

This ring is generated by Heaviside functions, i.e.

xi (I ) =

{
1 if i ∈ I

0 else

for i ∈ P and I ∈ J(P). In particular, the following
map is surjective

Z[ei | i ∈ P]→ FP(P)

ei 7→ xi

and its kernel contains G = {ej (1− ei ) | i ≤P j}.
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A Ring from Order Ideals

α β

α + β

2α + β

This poset has 6
antichains ∅, {α},
{β}, {α, β}, {α + β},
and {2α + β}.

The associated graded
has Hilbert series

1 + 4t + t2.

Theorem

For any degree monomial order, the free poset ring
FP(P) and its associated graded (w.r.t. the degree
filtration) have presentations

FP(P) ∼= Z[ei | i ∈ P]/(G)

grFP(P) ∼= Z[ei | i ∈ P]/(indegG)

and moreover

Hilb(grFP(P); t) =
∑
A⊆P

antichain

t#A.

A version of this theorem was proved by Chapoton.
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A Ring from Regions

Let A be an arrangement and C a cone with regions R(C).

Definition

The Varchenko-Gel’fand ring of C is the set of maps f : R(C)→ Z with
pointwise addition and multiplication.

1

0
0 3

0

+

0

0
1

−1

0

=

1

0
1 2

0
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A Ring from Regions

Let A be an arrangement and C a cone with regions R(C).

Theorem (DB, 21)

One can explicitly describe a collection of polynomials G ⊆ Z[eH | H ∈ A]
such that for any “compatible” monomial order

VG (C) ∼= Z[eH | H ∈ A]/(G)

grVG (C) ∼= Z[eH | H ∈ A]/(indegG)

where grVG (C) is the associated graded of VG (C) with respect to a
certain filtration. In particular, the Hilbert series is

Hilb(grVG (C); t) = Poin(C, t).

The C = V case was first proved by Varchenko and Gel’fand.
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The Two Rings Together

Let Shi(n) be the nth Shi arrangement,

σ ∈ Sn,

σC a Weyl cone, and

Eσ the poset we introduced (but didn’t define) earlier.

Upshot

Combining the previous statements gives Z-algebra isomorphisms

VG (σC ) ∼= FP(Eσ)

grVG (σC ) ∼= grFP(Eσ),

and in particular

Poin(σC , t) = Hilb(grVG (σC ); t) =
∑

anitchains
A⊆Eσ

t#A.

Galen Dorpalen-Barry (RUB) Shi arrangements April 21, 2023 33 / 38



Back to Narayna Numbers

H3

H1

H2

On the previous slide, we saw that

Poin(σC , t) =
∑

anitchains
A⊆Eσ

t#A.

When σ = 12 · · · n, the poset Eσ is
the root poset Φ+. One definition of
the Narayana numbers is

N(n, k) =
1

n

(
n

k

)(
n

k − 1

)
=#

{
antichains of Φ+

of cardinality k

}
which refine the Catalan numbers

Cn =#
{

antichains of Φ+
}
.
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A Question for the Audience

Have you seen the free poset ring before?
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Thank you for your attention!
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