Narayana numbers from the geometry of Shi arrangements

Galen Dorpalen-Barry
Ruhr-Universität Bochum
Co(mbinatorial workspace)
April 21, 2023

Outline

(1) Hyperplane Arrangements \& their Cones
(2) Shi Arrangements
(3) Two Rings

- A ring from order ideals
- A ring from regions
- The two rings together

Arrangements of Hyperplanes

- A hyperplane is an affine linear subspace of codimension 1.
- A collection of finitely-many (distinct) hyperplanes is an arrangement.

Arrangements of Hyperplanes

- A hyperplane is an affine linear subspace of codimension 1.
- A collection of finitely-many (distinct) hyperplanes is an arrangement.

Today we'll focus on

- regions (= open, connected components of the complement), and
- intersections (= nonempty intersections of some of the hyperplanes).

Arrangements of Hyperplanes

The following arrangement has 6 regions and the set of intersections is

$$
\mathbb{R}^{2}, H_{1}, H_{2}, H_{3}, H_{1} \cap H_{2} \cap H_{3}
$$

- A hyperplane is an affine linear subspace of codimension 1.
- A collection of finitely-many (distinct) hyperplanes is an arrangement.

Today we'll focus on

- regions (= open, connected components of the complement), and
- intersections (= nonempty intersections of some of the hyperplanes).

Poset of Intersections

Let \mathcal{A} be an arrangement in $V \cong \mathbb{R}^{d}$ with intersections $\mathcal{L}(\mathcal{A})$.

- The elements of $\mathcal{L}(\mathcal{A})$ form a
 poset under reverse inclusion.
- A theorem of Zaslavsky relates the Möbius function values of lower intervals $[V, X] \subseteq \mathcal{L}(\mathcal{A})$ to the number of regions of the arrangement.

Poset of Intersections

Let \mathcal{A} be an arrangement in $V \cong \mathbb{R}^{d}$ with intersections $\mathcal{L}(\mathcal{A})$.

- The elements of $\mathcal{L}(\mathcal{A})$ form a
 poset under reverse inclusion.
- A theorem of Zaslavsky relates the Möbius function values of lower intervals $[V, X] \subseteq \mathcal{L}(\mathcal{A})$ to the number of regions of the arrangement.

Zaslavsky's Theorem

Let \mathcal{A} be an arrangement with regions $\mathcal{R}(\mathcal{A})$ and intersections $\mathcal{L}(\mathcal{A})$.
Theorem (Zaslavsky)

$$
\# \mathcal{R}(\mathcal{A})=\sum_{x \in \mathcal{L}(\mathcal{A})}|\mu(V, X)|
$$

Zaslavsky's Theorem

Let \mathcal{A} be an arrangement with regions $\mathcal{R}(\mathcal{A})$ and intersections $\mathcal{L}(\mathcal{A})$.
Theorem (Zaslavsky)

$$
\# \mathcal{R}(\mathcal{A})=\sum_{X \in \mathcal{L}(\mathcal{A})}|\mu(V, X)|
$$

Note: Zaslavsky's theorem has two parts, depending on whether or not you include the absolute value signs.

Zaslavsky's Theorem

Let \mathcal{A} be an arrangement with regions $\mathcal{R}(\mathcal{A})$ and intersections $\mathcal{L}(\mathcal{A})$.
Theorem (Zaslavsky)

$$
\# \mathcal{R}(\mathcal{A})=\sum_{X \in \mathcal{L}(\mathcal{A})}|\mu(V, X)|
$$

Note: Zaslavsky's theorem has two parts, depending on whether or not you include the absolute value signs.

Zaslavsky's theorem says: $1+3(1)+2=6$.

The Poincaré Polynomial

Let \mathcal{A} be an arrangement in \mathbb{R}^{d} with regions $\mathcal{R}(\mathcal{A})$ and intersections $\mathcal{L}(\mathcal{A})$. Define the Poincaré polynomial of \mathcal{A} by

$$
\operatorname{Poin}(\mathcal{A}, t)=\sum_{X \in \mathcal{L}(\mathcal{A})}|\mu(V, X)| t^{\operatorname{codim}(X)}
$$

Its coefficients are the Whitney numbers of the arrangement.

The Poincaré polynomial of this arrangement is $\operatorname{Poin}(\mathcal{A}, t)=1+3 t+2 t^{2}$.

Cones of Hyperplane Arrangements

- A cone \mathcal{K} of an arrangement \mathcal{A} is an intersection of (open) halfspaces defined by some of the hyperplanes of \mathcal{A}.
- Cones are interesting in the theory of arrangements, as they unify the theory of central and affine arrangements while generalizing both.
Here are two examples of cones.

Regions and Intersections for a Cone

Let \mathcal{A} be an arrangement in V with regions $\mathcal{R}(\mathcal{A})$ and intersections $\mathcal{L}(\mathcal{A})$, and let \mathcal{C} be a cone.

- The regions of \mathcal{C} are the regions of the arrangement contained in \mathcal{C}, i.e.

$$
\mathcal{R}(\mathcal{C})=\{R \in \mathcal{R}(\mathcal{A}) \mid R \subseteq \mathcal{C}\}
$$

- The intersections of \mathcal{C} are the
 intersections $X \in \mathcal{L}(\mathcal{A})$ which cut through the cone, i.e.,

$$
\mathcal{L}(\mathcal{C})=\{X \in \mathcal{L}(\mathcal{A}) \mid X \cap \mathcal{C} \neq \emptyset\} .
$$

Zaslavsky's Theorem for Cones

Let \mathcal{A} be an arrangement with regions $\mathcal{R}(\mathcal{A})$ and intersections $\mathcal{L}(\mathcal{A})$, and let \mathcal{C} be a cone of that arrangement.

Theorem (Zaslavsky)

$$
\# \mathcal{R}(\mathcal{C})=\sum_{X \in \mathcal{L}(\mathcal{C})}|\mu(V, X)|
$$

Zaslavsky's theorem says: $1+1(1)=2$.

The Poincaré Polynomial of a Cone

Define the Poincaré polynomial of a cone \mathcal{C} in an arrangement by

$$
\operatorname{Poin}(\mathcal{C}, t)=\sum_{X \in \mathcal{L}(\mathcal{C})}|\mu(V, X)| t^{\operatorname{codim}(X)}
$$

Its coefficients are the Whitney numbers of the cone.

The Poincaré polynomial of this cone is $\operatorname{Poin}(\mathcal{C}, t)=1+1 t$.

Example: A Cone in an Affine Arrangement

Below (left) is an example of a cone in an affine arrangement, together with its intersection poset (right)

Example: A Cone in an Affine Arrangement

Below (left) is an example of a cone in an affine arrangement, together with its intersection poset (right)

The Poincaré polynomial of this cone is $\operatorname{Poin}(\mathcal{C}, t)=1+3 t+t^{2}$.

Example Cont'd

> On the previous slide, we saw that Poin $(\mathcal{C}, t)=1+3 t+t^{2}$

Example Cont'd

On the previous slide, we saw that $\operatorname{Poin}(\mathcal{C}, t)=1+3 t+t^{2}$.

The coefficients are the $n=3$ Narayana numbers

$$
N(n, k)=\frac{1}{n}\binom{n}{k}\binom{n}{k-1},
$$

which refine the Catalan numbers

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

Example Cont'd

On the previous slide, we saw that $\operatorname{Poin}(\mathcal{C}, t)=1+3 t+t^{2}$.

The coefficients are the $n=3$ Narayana numbers

$$
N(n, k)=\frac{1}{n}\binom{n}{k}\binom{n}{k-1},
$$

which refine the Catalan numbers

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

This isn't a coincidence!

Shi Arrangements

Shi Arrangements

based on joint work with Christian Stump

For the experts: I'm going to tell you a "Type A" story, but this will hold for any irreducible crystallographic root system.

What is the Shi arrangement?

The (Type A) Shi arrangement has hyperplanes

$$
H_{i, j, k}=\left\{x \in \mathbb{R}^{n} \mid x_{i}-x_{j}=k\right\}
$$

for $i<j \in[n]:=\{1,2, \ldots, n\}$ and $k=0,1$.
Below is an affine slice of the Shi arrangement for $n=3$.

Weyl Cones

The (Type A) Shi arrangement has hyperplanes

$$
H_{i, j, k}=\left\{x \in \mathbb{R}^{n} \mid x_{i}-x_{j}=k\right\}
$$

for $i<j \in[n]:=\{1,2, \ldots, n\}$ and $k=0,1$.
Below is an affine slice of the Shi arrangement for $n=3$.

A Weyl cone of the Shi arrangement, is a cone which arises as a region of the reflection subarrangement

$$
\left\{H_{i, j, 0} \mid i<j \in[n]\right\} .
$$

One Weyl cone is shaded on the right.

A Correspondence Between Cones and Permutations

On the previous slide, saw that a Weyl cone of the Shi arrangement is a cone which arises as a region of the reflection subarrangement whose hyperplanes are

$$
H_{i, k, 0}=\left\{x \in \mathbb{R}^{n} \mid x_{i}-x_{j}=0\right\}
$$

The regions $\sigma \mathcal{C}$ of this arrangement are in bijection with elements of the symmetric group $\sigma \in \mathfrak{S}_{n}$ via

$$
x \in \sigma \mathcal{C} \Longleftrightarrow x_{\sigma_{1}}<x_{\sigma_{2}}<\cdots<x_{\sigma_{n}}
$$

The $\sigma=231$ cone is shaded on the left.

A Correspondence Between Cones and Permutations

On the previous slide, saw that a Weyl cone of the Shi arrangement is a cone which arises as a region of the reflection subarrangement whose hyperplanes are

$$
H_{i, k, 0}=\left\{x \in \mathbb{R}^{n} \mid x_{i}-x_{j}=0\right\}
$$

The regions $\sigma \mathcal{C}$ of this arrangement are in bijection with elements of the symmetric group $\sigma \in \mathfrak{S}_{n}$ via

$$
x \in \sigma \mathcal{C} \Longleftrightarrow x_{\sigma_{1}}<x_{\sigma_{2}}<\cdots<x_{\sigma_{n}}
$$

The $\sigma=123$ cone is shaded on the left.

Catalan Numbers and Region Counts

Theorem (Athanasiadis)
When $\sigma=12 \cdots n$ is the identity element of \mathfrak{S}_{n}, the number of regions in $\sigma \mathcal{C}$ is the nth Catalan number C_{n}.

The $\sigma=123$ cone is shaded on the left and we can see that there are $C_{3}=5$ regions.

Catalan Numbers and Region Counts

Theorem (Athanasiadis)
When $\sigma=12 \cdots n$ is the identity element of \mathfrak{S}_{n}, the number of regions in $\sigma \mathcal{C}$ is the nth Catalan number C_{n}.

The $\sigma=123$ cone is shaded on the left and we can see that there are $C_{3}=5$ regions.

Theorem ((DB)S, 22+)
When $\sigma=12 \cdots n$ is the identity element of \mathfrak{S}_{n}, the Whitney numbers of $\sigma \mathcal{C}$ are the Narayana numbers $N(n, k)$.

Catalan Numbers and Region Counts

Theorem (Athanasiadis)

When $\sigma=12 \cdots n$ is the identity element of \mathfrak{S}_{n}, the number of regions in $\sigma \mathcal{C}$ is the nth Catalan number C_{n}.

The $\sigma=123$ cone is shaded on the left and we can see that there are $C_{3}=5$ regions.

Theorem ((DB)S, 22+)
When $\sigma=12 \cdots n$ is the identity element of \mathfrak{S}_{n}, the Whitney numbers of $\sigma \mathcal{C}$ are the Narayana numbers $N(n, k)$.

This is a special case of one of our results, which describes all intersection posets of all Weyl cones. Unfortunately it requires more Coxeter theory than we have time for today.

A Note on the Proof

- The proof of our theorem uses "elemetentary" techniques and proves something stronger.
- The general theorem describes the poset of intersections via the antichains of a certain poset E_{σ}, which specializes to the root poset when σ is the identity.
- The numerical statement can be proved using commutative algebra... and that's what I want to tell you about for the remainder of this talk!

Two Rings

Warning: This section uses several terms that I haven't defined. Some

 useful references:- Section 1 of "Gröbner Bases and Convex Polytopes" by Sturmfels
- Chapter 2 of "Ideals, Varieties, and Algorithms" by Cox, Little, O'Shea

The (very minor) extension to polynomial rings over \mathbb{Z} is given in arXiv:2104.02740.

A Ring from Order Ideals

Let P be a poset and $J(P)$ its collection of order ideals (= down-sets).

Definition

The free poset ring of P is the set of maps $f: J(P) \rightarrow \mathbb{Z}$ with pointwise addition and multiplication.

A Ring from Order Ideals

Let P be a poset and $J(P)$ its collection of order ideals (= down-sets).

Definition

The free poset ring of P is the set of maps $f: J(P) \rightarrow \mathbb{Z}$ with pointwise addition and multiplication.

This poset has 6 antichains $\emptyset,\{\alpha\},\{\beta\},\{\alpha, \beta\},\{\alpha+\beta\}$, and $\{2 \alpha+\beta\}$.

A Ring from Order Ideals

Let P be a poset and $J(P)$ its collection of order ideals (= down-sets).

Definition

The free poset ring of P is the set of maps $f: J(P) \rightarrow \mathbb{Z}$ with pointwise addition and multiplication.

This poset has 6 antichains $\emptyset,\{\alpha\},\{\beta\},\{\alpha, \beta\},\{\alpha+\beta\}$, and $\{2 \alpha+\beta\}$. An element of the free poset ring is an assignment of an integer weight to each of these order ideals.

A Ring from Order Ideals

Let $F P(P)$ be the free poset ring of P.

A Ring from Order Ideals

Let $F P(P)$ be the free poset ring of P.

If I contains an
element in the shaded region, then
$x_{\alpha+\beta}(I)=1$.

Theorem
This ring is generated by Heaviside functions, i.e.

$$
x_{i}(I)= \begin{cases}1 & \text { if } i \in I \\ 0 & \text { else }\end{cases}
$$

for $i \in P$ and $I \in J(P)$.

A Ring from Order Ideals

Let $F P(P)$ be the free poset ring of P.

If I is contained in the shaded region, then $1-x_{\alpha+\beta}(I)=1$. The empty ideal, for example, is contained in the shaded region.

Theorem

This ring is generated by Heaviside functions, i.e.

$$
x_{i}(I)= \begin{cases}1 & \text { if } i \in I \\ 0 & \text { else }\end{cases}
$$

for $i \in P$ and $I \in J(P)$.

A Ring from Order Ideals

Let $F P(P)$ be the free poset ring of P.

If I is generated by elements in the shaded region, then
$x_{\alpha+\beta}\left(1-x_{2 \alpha+\beta}\right)(I)=1$

Theorem
This ring is generated by Heaviside functions, i.e.

$$
x_{i}(I)= \begin{cases}1 & \text { if } i \in I \\ 0 & \text { else }\end{cases}
$$

for $i \in P$ and $I \in J(P)$.

A Ring from Order Ideals

Let $F P(P)$ be the free poset ring of P.

If I is generated by elements in the shaded region, then
$x_{\alpha+\beta}\left(1-x_{2 \alpha+\beta}\right)(I)=1$

Theorem

This ring is generated by Heaviside functions, i.e.

$$
x_{i}(I)= \begin{cases}1 & \text { if } i \in I \\ 0 & \text { else }\end{cases}
$$

for $i \in P$ and $I \in J(P)$. In particular, the following map is surjective

$$
\begin{aligned}
\mathbb{Z}\left[e_{i} \mid i \in P\right] & \rightarrow F P(P) \\
e_{i} & \mapsto x_{i}
\end{aligned}
$$

A Ring from Order Ideals

Let $F P(P)$ be the free poset ring of P.

Theorem

This ring is generated by Heaviside functions, i.e.

$$
x_{i}(I)= \begin{cases}1 & \text { if } i \in I \\ 0 & \text { else }\end{cases}
$$

for $i \in P$ and $I \in J(P)$. In particular, the following map is surjective

$$
\begin{aligned}
\mathbb{Z}\left[e_{i} \mid i \in P\right] & \rightarrow F P(P) \\
e_{i} & \mapsto x_{i}
\end{aligned}
$$

and its kernel contains $\mathcal{G}=\left\{e_{j}\left(1-e_{i}\right) \mid i \leq_{p} j\right\}$.

A Ring from Order Ideals

This poset has 6 antichains $\emptyset,\{\alpha\}$, $\{\beta\},\{\alpha, \beta\},\{\alpha+\beta\}$, and $\{2 \alpha+\beta\}$.

The associated graded has Hilbert series

Theorem

For any degree monomial order, the free poset ring FP (P) and its associated graded (w.r.t. the degree filtration) have presentations

$$
\begin{aligned}
F P(P) & \cong \mathbb{Z}\left[e_{i} \mid i \in P\right] /(\mathcal{G}) \\
\mathfrak{g r} F P(P) & \cong \mathbb{Z}\left[e_{i} \mid i \in P\right] /\left(i n_{\operatorname{deg}} \mathcal{G}\right)
\end{aligned}
$$

and moreover

$$
\operatorname{Hilb}(\mathfrak{g r} F P(P) ; t)=\sum_{\substack{A \subseteq P \\ \text { antichain }}} t^{\# A}
$$

A Ring from Regions

Let \mathcal{A} be an arrangement and \mathcal{C} a cone with regions $\mathcal{R}(\mathcal{C})$.

Definition

The Varchenko-Gel'fand ring of \mathcal{C} is the set of maps $f: \mathcal{R}(\mathcal{C}) \rightarrow \mathbb{Z}$ with pointwise addition and multiplication.

A Ring from Regions

Let \mathcal{A} be an arrangement and \mathcal{C} a cone with regions $\mathcal{R}(\mathcal{C})$.

Theorem (DB, 21)

One can explicitly describe a collection of polynomials $\mathcal{G} \subseteq \mathbb{Z}\left[e_{H} \mid H \in \mathcal{A}\right]$ such that for any "compatible" monomial order

$$
\begin{aligned}
V G(\mathcal{C}) & \cong \mathbb{Z}\left[e_{H} \mid H \in \mathcal{A}\right] /(\mathcal{G}) \\
\mathfrak{g r} V G(\mathcal{C}) & \cong \mathbb{Z}\left[e_{H} \mid H \in \mathcal{A}\right] /\left(i n_{\operatorname{deg}} \mathcal{G}\right)
\end{aligned}
$$

 certain filtration. In particular, the Hilbert series is

$$
\operatorname{Hilb}(\mathfrak{g r} V G(\mathcal{C}) ; t)=\operatorname{Poin}(\mathcal{C}, t)
$$

[^0]
The Two Rings Together

Let $\operatorname{Shi}(n)$ be the nth Shi arrangement,
$\sigma \in \mathfrak{S}_{n}$,
σC a Weyl cone, and
E_{σ} the poset we introduced (but didn't define) earlier.

Upshot

Combining the previous statements gives \mathbb{Z}-algebra isomorphisms

$$
\begin{aligned}
V G(\sigma C) & \cong F P\left(E_{\sigma}\right) \\
\mathfrak{g r} V G(\sigma C) & \cong \mathfrak{g r} F P\left(E_{\sigma}\right),
\end{aligned}
$$

and in particular

$$
\operatorname{Poin}(\sigma C, t)=\operatorname{Hilb}(\mathfrak{g r} V G(\sigma C) ; t)=\sum_{\substack{\text { anitcchains } \\ A \subseteq E_{\sigma}}} t^{\# A}
$$

Back to Narayna Numbers

On the previous slide, we saw that

$$
\operatorname{Poin}(\sigma C, t)=\sum^{\# A}
$$

anitchains
$A \subseteq E_{\sigma}$

Back to Narayna Numbers

On the previous slide, we saw that

$$
\operatorname{Poin}(\sigma C, t)=\sum t^{\# A}
$$

$$
\begin{aligned}
N(n, k) & =\frac{1}{n}\binom{n}{k}\binom{n}{k-1} \\
& =\#\left\{\begin{array}{c}
\text { antichains of } \Phi^{+} \\
\text {of cardinality } k
\end{array}\right\}
\end{aligned}
$$

Back to Narayna Numbers

On the previous slide, we saw that

$$
\operatorname{Poin}(\sigma C, t)=\sum_{\substack{\text { anitchains } \\ A \subseteq E_{\sigma}}} t^{\# A} .
$$

When $\sigma=12 \cdots n$, the poset E_{σ} is the root poset Φ^{+}. One definition of the Narayana numbers is

$$
\begin{aligned}
N(n, k) & =\frac{1}{n}\binom{n}{k}\binom{n}{k-1} \\
& =\#\left\{\begin{array}{c}
\text { antichains of } \Phi^{+} \\
\text {of cardinality } k
\end{array}\right\}
\end{aligned}
$$

which refine the Catalan numbers

$$
C_{n}=\#\left\{\text { antichains of } \Phi^{+}\right\} .
$$

A Question for the Audience

Have you seen the free poset ring before?

Thank you for your attention!

Some References

Frédéric Chapoton.
Antichains of positive roots and Heaviside functions. arXiv 0303220, pages 1-7, 2003.
囯 Galen Dorpalen-Barry.
The Varchenko-Gel'fand Ring of a Cone.
arXiv 2104.02740, pages 1-16, 2021.
Thomas Zaslavsky.
A Combinatorial Analysis of Topological Dissections.
Advances in Math., 25(3):267-285, 1977.

Notable Mentions

嗇 Drew Armstrong，Victor Reiner，and Brendon Rhoades．
Parking spaces．
Adv．Math．，269：647－706， 2015.
嗇 Drew Armstrong and Brendon Rhoades．
The Shi arrangement and the Ish arrangement．
Trans．Amer．Math．Soc．，364（3）：1509－1528， 2012.
James E．Humphreys．
Reflection Groups and Coxeter Groups，volume 29 of Cambridge Studies in Advanced Mathematics．
Cambridge University Press，Cambridge， 1990.
圊 Jian Yi Shi．
Alcoves corresponding to an affine Weyl group． J．London Math．Soc．（2），35（1）：42－55， 1987.

[^0]: The $\mathcal{C}=V$ case was first proved by Varchenko and Gel'fand.

