The Poincaré-extended ab-index

Galen Dorpalen-Barry

joint with Joshua Maglione and Christian Stump arXiv:2301.05904

CATS Seminar at Kentucky
February 6, 2023

Outline

(1) Big Picture
(2) R-labeled Posets and Generalized Descent Sets
(3) The coefficients of the extended ab-index

4 Connection to the (ordinary) ab-index

The Big Picture

Graded Posets

Let P be a poset with $\hat{0}$ and $\hat{1}$.

- A chain is a subset of the ground set which is totally ordered with respect to P.
- A chain $\mathcal{C}=C_{1}<C_{2}<\cdots C_{n}$ is maximal if C_{i} covers C_{i+1} for all $i=1, \ldots, n-1$.
- P is graded if every maximal chain from $\hat{0}$ to $\hat{1}$ has the same length.
- For $x, y \in P$, the interval between x and y is

$$
[x, y]=\{z \mid x \leq z \leq y\} .
$$

The Möbius Function of a Poset

Let P be a poset with $\hat{0}$ and $\hat{1}$.
For $x \in P$, the Möbius function of the interval [$\hat{0}, x]$ is defined recursively by

$$
\mu(\hat{0}, x)=-\sum_{\hat{0} \leq z<x} \mu(\hat{0}, z)
$$

together with $\mu(\hat{0}, \hat{0})=1$.

The Poincaré Polynomial of a Poset

Let P be a graded poset.
Since P is graded, we can define a rank function rank: $P \rightarrow \mathbb{Z}$ recursively by
$\operatorname{rank}(\hat{0})=0$, and

$$
x \lessdot z \Rightarrow \operatorname{rank}(z)=\operatorname{rank}(x)+1
$$

The Poincaré Polynomial of a Poset

Let P be a graded poset.
Since P is graded, we can define a rank function rank: $P \rightarrow \mathbb{Z}$ recursively by
$\operatorname{rank}(\hat{0})=0$, and

$$
x \lessdot z \Rightarrow \operatorname{rank}(z)=\operatorname{rank}(x)+1
$$

Definition

The Poincaré polynomial of P is

$$
\operatorname{Poin}(P ; y)=\sum_{x \in P}|\mu(\hat{0}, x)| y^{\operatorname{rank}(x)}
$$

Connections to the geometry of hyperplane arrangements, arises a specialization of the Tutte polynomial of a matroid, cohomolgy of the complexified complement, etc.

$$
1+3 y+3 y^{2}+y^{3}
$$

$1+3 y+2 y^{2}$

Chain Poincaré Polynomials

Let P be a graded poset and $\mathcal{C}=\left\{C_{1}<\cdots<C_{k}\right\}$ a chain of P.
The chain Poincaré polynomial of \mathcal{C} is

$$
\operatorname{Poin}(P, \mathcal{C} ; y)=\prod_{i=1}^{k} \operatorname{Poin}\left(\left[C_{i}, C_{i+1}\right], y\right)
$$

where $C_{k+1}=\hat{1}$.

$$
\operatorname{Poin}(P, \mathcal{C} ; y)=(1+y)^{2}
$$

Chain Poincaré Polynomials

Let P be a graded poset and $\mathcal{C}=\left\{C_{1}<\cdots<C_{k}\right\}$ a chain of P.
The chain Poincaré polynomial of \mathcal{C} is

$$
\operatorname{Poin}(P, \mathcal{C} ; y)=\prod_{i=1}^{k} \operatorname{Poin}\left(\left[C_{i}, C_{i+1}\right], y\right)
$$

where $C_{k+1}=\hat{1}$.

$$
\operatorname{Poin}(P, \mathcal{C} ; y)=\left(1+2 y+y^{2}\right)(1+y)
$$

The Weight of a Chain

Let P be a graded poset and $\mathcal{C}=\left\{C_{1}<\cdots<C_{k}\right\}$ a chain of P.
If P is rank n (every maximal chain from $\hat{0}$ to $\hat{1}$ has length $n+1$) then the weight of a chain \mathcal{C} is $\operatorname{wt}(\mathcal{C})=w_{1} \ldots w_{n} \in \mathbb{Z}\langle\mathbf{a}, \mathbf{b}\rangle$ where

$$
w_{i}= \begin{cases}\mathbf{b} & \text { if } \exists C_{j} \in \mathcal{C} \text { such that } \operatorname{rank}\left(C_{j}\right)=i-1 \\ \mathbf{a}-\mathbf{b} & \text { else } .\end{cases}
$$

$$
\mathrm{wt}(\mathcal{C})=(\mathbf{a}-\mathbf{b}) \mathbf{b} \mathbf{b}
$$

The Weight of a Chain

Let P be a graded poset and $\mathcal{C}=\left\{C_{1}<\cdots<C_{k}\right\}$ a chain of P.
If P is rank n (every maximal chain from $\hat{0}$ to $\hat{1}$ has length $n+1$) then the weight of a chain \mathcal{C} is $\operatorname{wt}(\mathcal{C})=w_{1} \ldots w_{n} \in \mathbb{Z}\langle\mathbf{a}, \mathbf{b}\rangle$ where

$$
w_{i}= \begin{cases}\mathbf{b} & \text { if } \exists C_{j} \in \mathcal{C} \text { such that } \operatorname{rank}\left(C_{j}\right)=i-1 \\ \mathbf{a}-\mathbf{b} & \text { else } .\end{cases}
$$

$$
\mathrm{wt}(\mathcal{C})=\mathbf{b}(\mathbf{a}-\mathbf{b}) \mathbf{b}
$$

The Poincaré-extended ab-index

Definition

Let P be a graded poset. The (Poincaré-)extended ab-index of P is

$$
\operatorname{ex} \Psi(P ; y, \mathbf{a}, \mathbf{b})=\sum_{\mathcal{C}: \text { chain of } P \backslash\{\hat{1}\}} \operatorname{Poin}(P, \mathcal{C}, y) \operatorname{wt}_{\mathcal{C}}(\mathbf{a}, \mathbf{b})
$$

The Poincaré-extended ab-index

Definition

Let P be a graded poset. The (Poincaré-)extended ab-index of P is

$$
\operatorname{ex} \Psi(P ; y, \mathbf{a}, \mathbf{b})=\sum_{\mathcal{C}: \text { chain of } P \backslash\{\hat{1}\}} \operatorname{Poin}(P, \mathcal{C}, y) \text { wt }_{\mathcal{C}}(\mathbf{a}, \mathbf{b}) .
$$

\mathcal{C}	$\operatorname{Poin}(\mathcal{L}, \mathcal{C} ; y)$	$\operatorname{rank}(\mathcal{C})$	wt $_{\mathcal{C}}(\mathbf{a}, \mathbf{b})$
$\}$	1	$\}$	$(\mathbf{a}-\mathbf{b})^{2}$
$\{\hat{0}\}$	$1+3 y+2 y^{2}$	$\{0\}$	$\mathbf{b}(\mathbf{a}-\mathbf{b})$
$\left\{\alpha_{i}\right\}$	$1+y$	$\{1\}$	$(\mathbf{a}-\mathbf{b}) \mathbf{b}$
$\left\{\hat{0}<\alpha_{i}\right\}$	$(1+y)^{2}$	$\{0,1\}$	\mathbf{b}^{2}

$$
\begin{aligned}
& \operatorname{ex} \Psi(\mathcal{L} ; y, \mathbf{a}, \mathbf{b})=(\mathbf{a}-\mathbf{b})^{2}+\left(1+3 y+2 y^{2}\right) \mathbf{b}(\mathbf{a}-\mathbf{b}) \\
&+3 \cdot(1+y)(\mathbf{a}-\mathbf{b}) \mathbf{b}+3 \cdot(1+y)^{2} \mathbf{b}^{2} \\
&=\mathbf{a}^{2}+\left(3 y+2 y^{2}\right) \mathbf{b} \mathbf{a}+(2+3 y) \mathbf{a b}+y^{2} \mathbf{b}^{2}
\end{aligned}
$$

The Poincaré-extended ab-index

Definition

Let P be a graded poset. The (Poincaré-)extended ab-index of P is

$$
\operatorname{ex} \Psi(P ; y, \mathbf{a}, \mathbf{b})=\sum_{\mathcal{C}: \text { chain of } P \backslash\{\hat{1}\}} \operatorname{Poin}(P, \mathcal{C}, y) \operatorname{wt}_{\mathcal{C}}(\mathbf{a}, \mathbf{b}) .
$$

For the poset on the left:

$$
\begin{aligned}
\operatorname{ex} \Psi(P ; y, \mathbf{a}, \mathbf{b}) & =\mathbf{a}^{3}+(3 y+2) \mathbf{a}^{2} \mathbf{b}+\left(3 y^{2}+6 y+2\right) \mathbf{a b a} \\
& +\left(3 y^{2}+3 y+1\right) \mathbf{a} \mathbf{b}^{2}+\left(y^{3}+3 y^{2}+3 y\right) \mathbf{b} \mathbf{a}^{2} \\
& +\left(2 y^{3}+6 y^{2}+3 y\right) \mathbf{b a b}+\left(2 y^{3}+3 y^{2}\right) \mathbf{b}^{2} \mathbf{a} \\
& +y^{3} \mathbf{b}^{3} .
\end{aligned}
$$

The Poincaré-extended ab-index

Let P be a graded poset.

Definition

The (Poincaré-)extended ab-index of P is

$$
\operatorname{ex} \Psi(P ; y, \mathbf{a}, \mathbf{b})=\sum_{\mathcal{C}: \text { chain of } P \backslash\{\hat{1}\}} \operatorname{Poin}(P, \mathcal{C}, y) \operatorname{wt}_{\mathcal{C}}(\mathbf{a}, \mathbf{b}) .
$$

Conjecture (Maglione-Voll)

If P is the intersection poset of an arrangement of hyperplanes, then (a harmless modification of) $\operatorname{ex} \Psi(P ; y, 1, t)$ has nonnegative coefficients.

Their conjecture is true, even for $\operatorname{ex} \Psi(P ; y, \mathbf{a}, \mathbf{b})$, and holds for an even bigger class of posets!

The Poincaré-extended ab-index

Let P be a graded poset.

Definition

The (Poincaré-)extended ab-index of P is

$$
\operatorname{ex} \Psi(P ; y, \mathbf{a}, \mathbf{b})=\sum_{\mathcal{C}: \text { chain of } P \backslash\{\hat{1}\}} \operatorname{Poin}(P, \mathcal{C}, y) \mathrm{wt}_{\mathcal{C}}(\mathbf{a}, \mathbf{b})
$$

Conjecture (Maglione-Voll)

If P is the intersection poset of an arrangement of hyperplanes, then (a harmless modification of) $\operatorname{ex} \Psi(P ; y, 1, t)$ has nonnegative coefficients.

Their conjecture is true, even for $\operatorname{ex} \Psi(P ; y, \mathbf{a}, \mathbf{b})$, and holds for an even bigger class of posets! Before we get into the proof, let's look at where their conjecture comes from...

Motivation: Analytic Zeta Functions

Let \mathcal{A} be a central hyperplane arrangement in a real vector space with intersection lattice \mathcal{L}.

Maglione-Voll prove that (after a change of variables) the (coarse) analytic zeta function of \mathcal{A} is

$$
Z_{\mathcal{A}}(y, t)=\sum_{\mathcal{C}: \text { chain of } \mathcal{L} \backslash\{\hat{0}, \hat{1}\}} \operatorname{Poin}(\mathcal{C} \cup\{\hat{0}\}, y)\left(\frac{t}{1-t}\right)^{\# \mathcal{C}}
$$

Motivation: Analytic Zeta Functions

Let \mathcal{A} be a central hyperplane arrangement in a real vector space with intersection lattice \mathcal{L}.

Maglione-Voll prove that (after a change of variables) the (coarse) analytic zeta function of \mathcal{A} is

$$
Z_{\mathcal{A}}(y, t)=\sum_{\mathcal{C}: \text { chain of } \mathcal{L} \backslash\{\hat{0}, \hat{1}\}} \operatorname{Poin}(\mathcal{C} \cup\{\hat{0}\}, y)\left(\frac{t}{1-t}\right)^{\# \mathcal{C}}
$$

This is a bivariate version of the analytic zeta function.
A different bivariate specialization of their analytic zeta function recovers the celebrated Motivic Zeta function of a matroid given by Jensen-Kutler-Usatine.

Motivation: Analytic Zeta Functions

Let \mathcal{A} be a central hyperplane arrangement in a real vector space with intersection lattice \mathcal{L}.

Maglione-Voll prove that (after a change of variables) the (coarse) analytic zeta function of \mathcal{A} is

$$
Z_{\mathcal{A}}(y, t)=\sum_{\mathcal{C}: \text { chain of } \mathcal{L} \backslash\{\hat{0}, \hat{1}\}} \operatorname{Poin}(\mathcal{C} \cup\{\hat{0}\}, y)\left(\frac{t}{1-t}\right)^{\# \mathcal{C}}
$$

Putting all terms over the same denominator gives

$$
Z_{\mathcal{A}}(y, t)=\sum_{\mathcal{C}: \text { chain of } \mathcal{L} \backslash\{\hat{0}, \hat{1}\}} \frac{\operatorname{Poin}(\mathcal{C} \cup\{\hat{0}\}, y) t^{\# \mathcal{C}}(1-t)^{\operatorname{rank}(\mathcal{A})-\# \mathcal{C}}}{(1-t)^{\operatorname{rank}(\mathcal{A})}} .
$$

The numerator of this rational function is

$$
\operatorname{Num}_{\mathcal{A}}(y, t)=\sum_{\mathcal{C}: \text { chain of } \mathcal{L} \backslash\{\hat{0}, \hat{1}\}} \operatorname{Poin}(\mathcal{C} \cup\{\hat{0}\}, y) t^{\# \mathcal{C}}(1-t)^{\operatorname{rank}(\mathcal{A})-\# \mathcal{C}} .
$$

Motivation: Analytic Zeta Functions

The numerator of this rational function is

$$
\operatorname{Num}_{\mathcal{A}}(y, t)=\sum_{\mathcal{C}: \text { chain of } \mathcal{L} \backslash\{\hat{0}, \hat{1}\}} \operatorname{Poin}(\mathcal{C} \cup\{\hat{0}\}, y) t^{\# \mathcal{C}}(1-t)^{\operatorname{rank}(\mathcal{A})-\# \mathcal{C}} .
$$

We can now state Maglione-Voll's conjecture more precisely:

Conjecture (Maglione-Voll)

$\operatorname{Num}_{\mathcal{A}}(y, t)$ has nonnegative coefficients.

Motivation: Analytic Zeta Functions

The numerator of this rational function is

$$
\operatorname{Num}_{\mathcal{A}}(y, t)=\sum_{\mathcal{C}: \text { chain of } \mathcal{L} \backslash\{\hat{0}, \hat{1}\}} \operatorname{Poin}(\mathcal{C} \cup\{\hat{0}\}, y) t^{\# \mathcal{C}}(1-t)^{\operatorname{rank}(\mathcal{A})-\# \mathcal{C}} .
$$

We can now state Maglione-Voll's conjecture more precisely:
Conjecture (Maglione-Voll)
$\operatorname{Num}_{\mathcal{A}}(y, t)$ has nonnegative coefficients.

Kühne-Maglione studied $\operatorname{Num}_{\mathcal{A}}(1, t)$ as well, and conjectured that

$$
\operatorname{Poin}(\mathcal{A}, 1) \cdot(1+t)^{\text {rank } \mathcal{A}-1} \leq \operatorname{Num}_{\mathcal{A}}(1, t) .
$$

We won't discuss it today, but our proof of the Maglione-Voll conjecture will give a proof of Kühne-Maglione's conjecture (almost) for free!

R-labeled Posets and Descent Sets

R-labelings

Let P be a graded poset, and let $\mathcal{E}(P)=\{(x, y) \mid x, y \in P, x \lessdot y\}$ denote the set of cover relations of P.

A labeling $\lambda: \mathcal{E}(P) \rightarrow \mathbb{Z}$ is an R-labeling if for every interval $[x, y]$, there is a unique maximal chain $\mathcal{M}=\left\{x=C_{0} \lessdot C_{1} \lessdot \cdots \lessdot C_{k-1} \lessdot C_{k}=y\right\}$ such that the labels weakly increase, i.e.,

$$
\lambda\left(C_{i-1}, C_{i}\right) \leq \lambda\left(C_{i}, C_{i+1}\right) \quad \text { for } i=2, \ldots k-1
$$

Descent Sets

Let P be a graded poset of rank n, with a fixed R-labeling λ.
Let $\mathcal{M}=\left\{\hat{0}=C_{0} \lessdot C_{1} \lessdot \cdots \lessdot C_{k-1} \lessdot C_{k}=\hat{1}\right\}$ be a maximal chain of P. For $i \in\{1, \ldots, n-1\}, \mathcal{M}$ has a descent at index i if

$$
\lambda\left(C_{i-1}, C_{i}\right)>\lambda\left(C_{i}, C_{i+1}\right)
$$

This chain has a descent at position 1.

Descent Sets

Let P be a graded poset of rank n, with a fixed R-labeling λ.
Let $\mathcal{M}=\left\{\hat{0}=C_{0} \lessdot C_{1} \lessdot \cdots \lessdot C_{k-1} \lessdot C_{k}=\hat{1}\right\}$ be a maximal chain of P. For $i \in\{1, \ldots, n-1\}, \mathcal{M}$ has a descent at index i if

$$
\lambda\left(C_{i-1}, C_{i}\right)>\lambda\left(C_{i}, C_{i+1}\right)
$$

This chain has descents at positions 1 and 2 .

Generalized Descent Sets

Let P be a graded poset of rank n, with a fixed R-labeling λ,

- $\mathcal{M}=\left\{\hat{0}=C_{0} \lessdot C_{1} \lessdot \cdots \lessdot C_{k-1} \lessdot C_{k}=\hat{1}\right\}$ a maximal chain,
- E a subset of the edges of \mathcal{M}

For $i \in\{0, \ldots, n-1\},(\mathcal{M}, E)$ has a descent at index i if we have one of the following situations

where + means λ is increasing and - means that λ is decreasing.
Now we include $i=0$, which is a descent if and only if the edge above \mathcal{M}_{0} is in E !

Generalized Descent Sets (Example)

A maximal chain \mathcal{M} in an R-labeled poset, together with the descent sets for the (\mathcal{M}, E) pairs with $E=\emptyset,\{1\},\{2,3\}$.

Generalized Descent Sets

Let P be a graded poset of rank n, with a fixed R-labeling λ,

- $\mathcal{M}=\left\{\hat{0}=C_{0} \lessdot C_{1} \lessdot \cdots \lessdot C_{k-1} \lessdot C_{k}=\hat{1}\right\}$ a maximal chain,
- E a subset of the edges of \mathcal{M}

Then $\operatorname{mon}(M, E)=m_{1} \ldots m_{n}$ is the monomial in noncommuting variables \mathbf{a} and \mathbf{b} with

$$
m_{i}= \begin{cases}\mathbf{b} & \text { if } i \text { is a descent of }(\mathcal{M}, E) \\ \mathbf{a} & \text { else } .\end{cases}
$$

Generalized Descent Sets (Example)

A maximal chain \mathcal{M} in an R-labeled poset, together with the descent sets and monomials for the (\mathcal{M}, E) pairs with $E=\emptyset,\{1\},\{2,3\}$.

\emptyset	\{1\}	\{2,3\}
-	-	-
+	+	-
$2-\quad$ -	-	-
-	-	
\{1\}	\{0\}	\{1, 2\}
aba	baa	abb

The coefficients of the extended ab-index

The Poincaré-extended ab-index

Let P be a graded poset.

Definition

The extended ab-index of P is

$$
\operatorname{ex} \Psi(P ; y, \mathbf{a}, \mathbf{b})=\sum_{\mathcal{C}: \text { chain of } P \backslash\{\hat{1}\}} \operatorname{Poin}(P, \mathcal{C}, y) \operatorname{wt}_{\mathcal{C}}(\mathbf{a}, \mathbf{b}) .
$$

Conjecture (Maglione-Voll)

If P is the intersection poset of an arrangement of hyperplanes, then (a harmless modification of) $\operatorname{ex} \Psi(P ; y, 1, t)$ has nonnegative coefficients.

Their conjecture is true, even for $\operatorname{ex} \Psi(P ; y, \mathbf{a}, \mathbf{b})$, and holds for all posets with R-labelings!

The Poincaré-extended ab-index

Let P be a graded poset of rank n with an R-labeling λ.

Theorem ((DB)MS, 2023)
The extended ab-index of P is

$$
\operatorname{ex} \Psi(P ; y, \mathbf{a}, \mathbf{b})=\sum_{(\mathcal{M}, E)} y^{\# E} \operatorname{mon}(\mathcal{M}, E)
$$

where the sum ranges over all pairs (\mathcal{M}, E) where \mathcal{M} is a maximal chain and E is a subset of its edges.

This immediately implies a Maglione-Voll's conjecture.

Example

Computing $\operatorname{ex} \Psi(\mathcal{L} ; y, \mathbf{a}, \mathbf{b})$ using the theorem instead of the definition.

	E	$y^{\# E}$	$\hat{0} \lessdot \alpha_{1} \lessdot \hat{1}$	$\hat{0} \lessdot \alpha_{2} \lessdot \hat{1}$	$\hat{0} \lessdot \alpha_{3} \lessdot \hat{1}$
2/1 ${ }^{1}$	\{\}	1	aa	ab	ab
$\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}$	\{1\}	y	ba	ba	ba
	\{2\}	y	ab	ab	ab
0	\{1, 2\}	y^{2}	bb	ba	ba

$$
\operatorname{ex} \Psi(\mathcal{L} ; y, \mathbf{a}, \mathbf{b})=\mathbf{a a}+\left(3 y+2 y^{2}\right) \mathbf{b a}+(2+3 y) \mathbf{a b}+y^{2} \mathbf{b} \mathbf{b}
$$

The Poincaré-extended ab-index

Let P be a graded poset of rank n with an R-labeling λ.

Theorem ((DB)MS, 2023)

The extended ab-index of P is

$$
\operatorname{ex} \Psi(P ; y, \mathbf{a}, \mathbf{b})=\sum_{(\mathcal{M}, E)} y^{\# E} \operatorname{mon}(\mathcal{M}, E)
$$

where the sum ranges over all pairs (\mathcal{M}, E) where \mathcal{M} is a maximal chains E is a subset of its edges.

Let's look at a short sketch of the proof...

(Overly-Simplified!) Proof Outline

Let P be a graded poset of rank n with an R-labeling λ.
Step 1: Use the following theorem to reinterpret the chain Poincaré polynomial as a sum over maximal chains with certain increasing-decreasing pattern with respect to the R-labeling.

Theorem
Let P be a poset with R-labeling λ. For $x, y \in P$ with $x<y$, we have

$$
(-1)^{\operatorname{rank}(x, y)} \mu(x, y)=\#\{\text { decreasing maximal chains in }[x, y]\} .
$$

Step 2: Use inclusion-exclusion to describe the coefficients as sets.
Step 3: Show that the elements at the top of this inclusion-exclusion argument are in bijection with pairs (\mathcal{M}, E).

Connection to the (ordinary) ab-index

The (ordinary) ab-index

Definition

Let P be a graded poset. The $\mathbf{a b}$-index of P is

$$
\Psi(P ; \mathbf{a}, \mathbf{b})=\sum_{\mathcal{C}: \text { chain of } P \backslash\{\hat{1}\}} \operatorname{Poin}(P, \mathcal{C}, 0) \operatorname{wt}_{\mathcal{C}}(\mathbf{a}, \mathbf{b}) .
$$

The (ordinary) ab-index

Definition

Let P be a graded poset. The ab-index of P is

$$
\Psi(P ; \mathbf{a}, \mathbf{b})=\sum_{\mathcal{C}: \text { chain of } P \backslash\{\hat{1}\}} \operatorname{Poin}(P, \mathcal{C}, 0) w t_{\mathcal{C}}(\mathbf{a}, \mathbf{b})
$$

\mathcal{C}	$\operatorname{Poin}(\mathcal{L}, \mathcal{C} ; 0)$	$\operatorname{rank}(\mathcal{C})$	wt $_{\mathcal{C}}(\mathbf{a}, \mathbf{b})$
$\}$	1	$\}$	$(\mathbf{a}-\mathbf{b})^{2}$
$\{\hat{0}\}$	$1+0+0$	$\{0\}$	$\mathbf{b}(\mathbf{a}-\mathbf{b})$
$\left\{\alpha_{i}\right\}$	$1+0$	$\{1\}$	$(\mathbf{a}-\mathbf{b}) \mathbf{b}$
$\left\{\hat{0}<\alpha_{i}\right\}$	$(1+0)^{2}$	$\{0,1\}$	\mathbf{b}^{2}

$$
\begin{aligned}
\Psi(\mathcal{L} ; y, \mathbf{a}, \mathbf{b}) & =(\mathbf{a}-\mathbf{b})^{2}+\mathbf{b}(\mathbf{a}-\mathbf{b}) \\
+3 \cdot & (\mathbf{a}-\mathbf{b}) \mathbf{b}+3 \mathbf{b}^{2} \\
= & \mathbf{a}^{2}+2 \mathbf{a} \mathbf{b}
\end{aligned}
$$

The ω-map

Definition

Let m be a monomial in \mathbf{a} and \mathbf{b}. Define a transformation ω that first sends $\mathbf{a b}$ to $\mathbf{a b}+y \mathbf{b a}+y \mathbf{a}+y^{2} \mathbf{b} \mathbf{b}$, then all remaining \mathbf{a} 's to $\mathbf{a}+y \mathbf{b}$ and all remaining b's to $\mathbf{b}+y \mathbf{a}$.

If $\mathrm{m}=$ aabba, then

$$
\omega(\mathrm{m})=(\mathbf{a}+y \mathbf{b})\left(\mathbf{a b}+y \mathbf{b} \mathbf{a}+y \mathbf{a} \mathbf{b}+y^{2} \mathbf{b} \mathbf{b}\right)(\mathbf{b}+y \mathbf{a})(\mathbf{a}+y \mathbf{b}) .
$$

By extending ω linearly, we can apply this map to sums of monomials, i.e.,

$$
\begin{aligned}
\omega(\mathbf{a a}+2 \mathbf{a b}) & =(\mathbf{a}+y \mathbf{b})(\mathbf{a}+y \mathbf{b})+2\left(\mathbf{a b}+y \mathbf{b} \mathbf{a}+y \mathbf{a} \mathbf{b}+y^{2} \mathbf{b} \mathbf{b}\right) \\
& =\mathbf{a a}+\left(3 y+2 y^{2}\right) \mathbf{b} \mathbf{a}+(3 y+2) \mathbf{a b}+y^{2} \mathbf{b} \mathbf{b} .
\end{aligned}
$$

The ω-map

Definition

Let m be a monomial in \mathbf{a} and \mathbf{b}. Define a transformation ω that first sends $\mathbf{a b}$ to $\mathbf{a b}+y \mathbf{b}+y \mathbf{a}+y^{2} \mathbf{b} \mathbf{b}$, then all remaining \mathbf{a} 's to $\mathbf{a}+y \mathbf{b}$ and all remaining b's to $\mathbf{b}+y \mathbf{a}$.

If $\mathrm{m}=$ aabba, then

$$
\omega(\mathrm{m})=(\mathbf{a}+y \mathbf{b})\left(\mathbf{a b}+y \mathbf{b} \mathbf{a}+y \mathbf{a} \mathbf{b}+y^{2} \mathbf{b} \mathbf{b}\right)(\mathbf{b}+y \mathbf{a})(\mathbf{a}+y \mathbf{b}) .
$$

By extending ω linearly, we can apply this map to sums of monomials, i.e.,

$$
\begin{aligned}
\omega(\mathbf{a a}+2 \mathbf{a b}) & =(\mathbf{a}+y \mathbf{b})(\mathbf{a}+y \mathbf{b})+2\left(\mathbf{a b}+y \mathbf{b} \mathbf{a}+y \mathbf{a} \mathbf{b}+y^{2} \mathbf{b} \mathbf{b}\right) \\
& =\mathbf{a} \mathbf{a}+\left(3 y+2 y^{2}\right) \mathbf{b} \mathbf{a}+(3 y+2) \mathbf{a b}+y^{2} \mathbf{b} \mathbf{b} .
\end{aligned}
$$

You might recognize these polynomials from earlier in this talk...

The ω-map

The $\mathbf{a b}$ index of the following poset is $\mathbf{a a}+2 \mathbf{a b}$.

We just saw that

$$
\begin{aligned}
\omega(\mathbf{a a}+2 \mathbf{a b}) & =\mathbf{a a}+\left(3 y+2 y^{2}\right) \mathbf{b a}+(3 y+2) \mathbf{a b}+y^{2} \mathbf{b} \mathbf{b} \\
& =\operatorname{ex} \Psi(P ; y, \mathbf{a}, \mathbf{b}) .
\end{aligned}
$$

This is not a coincidence!

The ω-map

The $\mathbf{a b}$ index of the following poset is $\mathbf{a a}+2 \mathbf{a b}$.

We just saw that

$$
\begin{aligned}
\omega(\mathbf{a a}+2 \mathbf{a b}) & =\mathbf{a a}+\left(3 y+2 y^{2}\right) \mathbf{b a}+(3 y+2) \mathbf{a b}+y^{2} \mathbf{b} \mathbf{b} \\
& =\operatorname{ex} \Psi(P ; y, \mathbf{a}, \mathbf{b})
\end{aligned}
$$

This is not a coincidence!
Theorem ((DB)MS, 2023)
For an R-labeled poset P, we have $\operatorname{ex} \Psi(P ; y, \mathbf{a}, \mathbf{b})=\omega(\Psi(P ; \mathbf{a}, \mathbf{b}))$.

The ω-map

Several specializations of the ω map have already appeared in the literature:

- When P is a geometric lattice, setting $y=1$, recovers the ω map of Billera-Ehrenborg-Readdy,
- When P is the lattice of flats of an oriented interval greedoid, setting $y=1$ recovers the ω map of Saliola-Thomas, and
- When P is a distributive lattice, setting $y=r+1$ recovers the ω_{r} map of Ehrenborg.

The ω-map

Several specializations of the ω map have already appeared in the literature:

- When P is a geometric lattice, setting $y=1$, recovers the ω map of Billera-Ehrenborg-Readdy,
- When P is the lattice of flats of an oriented interval greedoid, setting $y=1$ recovers the ω map of Saliola-Thomas, and
- When P is a distributive lattice, setting $y=r+1$ recovers the ω_{r} map of Ehrenborg.

All three of these come from a pair of posets P, Q with an order- and rank- preserving map $z: P \rightarrow Q$ with the property that the size of the fiber $\# z^{-1}(\mathcal{C})$ of a chain \mathcal{C} is an evaluation of $\operatorname{Poin}(Q, \mathcal{C}, y)$.

Proof Sketch

Theorem ((DB)MS, 2023)

For an R-labeled poset P, we have $\operatorname{ex} \Psi(P ; y, \mathbf{a}, \mathbf{b})=\omega(\Psi(P ; \mathbf{a}, \mathbf{b}))$.

- It suffices to show that

$$
\omega(\operatorname{mon}(\mathcal{M}, \emptyset))=\sum_{E} y^{\# E} \operatorname{mon}(\mathcal{M}, E)
$$

for every maximal chain \mathcal{M}.

- Since the first letter of $\operatorname{mon}(\mathcal{M}, \emptyset)$ is always an \mathbf{a}, we can decompose $\operatorname{mon}(\mathcal{M}, \emptyset)$ into a product of monomials of the form $\mathbf{a b} \cdots \mathbf{b}$.

Thank you for listening!

Selected References

Eouis J. Billera, Richard Ehrenborg, and Margaret Readdy. The c-2d-index of oriented matroids.
J. Combin. Theory Ser. A, 80(1):79-105, 1997.

國 Lukas Kühne and Joshua Maglione.
On the geometry of flag Hilbert-Poincaré series for matroids.
Algebraic Combinatorics (to appear), 2023.

- Joshua Maglione and Christopher Voll.

Flag Hilbert-Poincaré series of hyperplane arrangements and Igusa zeta functions.
Israel Journal of Mathematics (to appear), 2023.
Richard Stanley.
Enumerative Combinatorics.
Cambridge University Press, New York, NY, USA, 2 edition, 2012.

Motivation from Igusa zeta functions

(erind Marcus du Sautoy and Fritz J. Grunewald.
Analytic properties of zeta functions and subgroup growth.
Ann. of Math. (2), 152(3):793-833, 2000.
(Fritz J. Grunewald, Daniel M. Segal, and Geoff C. Smith.
Subgroups of finite index in nilpotent groups.
Invent. Math., 93(1):185-223, 1988.

- Joshua Maglione and Christopher Voll.

Flag Hilbert-Poincaré series of hyperplane arrangements and Igusa zeta functions.
Israel Journal of Mathematics (to appear), 2023.

