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Arrangements of Hyperplanes

All vector spaces in this talk will be
real!

A hyperplane is an affine linear
subspace of codimension 1.

A collection of finitely-many
(distinct) hyperplanes is an
arrangement.

The following arrangement has 6
regions and the set of intersections is

R2, H1,H2,H3,H1 ∩ H2 ∩ H3

H1

H3

H2
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H1

H3

H2

Today we’ll focus on

regions (= open, connected components of the complement), and

intersections (= nonempty intersections of some of the hyperplanes).
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Poset of Intersections

Let A be an arrangement in V ∼= Rd

with intersections L(A).

The elements of L(A) form a
poset under reverse inclusion.

A theorem of Zaslavsky relates
the Möbius function values of
lower intervals [V ,X ] ⊆ L(A)
to the number of regions of the
arrangement.

H1

H3

H2

The poset of intersections is

R2

H1 H2 H3

H1 ∩ H2 ∩ H3

+1

−1 −1 −1

+2
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Zaslavsky’s Theorem
Let A be an arrangement with regions R(A) and intersections L(A).

Theorem (Zaslavsky)

#R(A) =
∑

X∈L(A) |µ(V ,X )|

Note: Zaslavsky’s theorem has two parts, depending on whether or not
you include the absolute value signs.

H1

H3

H2

R2

H1 H2 H3

H1 ∩ H2 ∩ H3

+1

−1 −1 −1

+2

Zaslavsky’s theorem says: 1 + 3(1) + 2 = 6.
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The Poincaré Polynomial
Let A be an arrangement in Rd with regions R(A) and intersections L(A).
Define the Poincaré polynomial of A by

Poin(A, t) =
∑

X∈L(A)

|µ(V ,X )|tcodim(X ).

Its coefficients are the Whitney numbers of the arrangement.

H1

H3

H2

R2

H1 H2 H3

H1 ∩ H2 ∩ H3

+1

−1 −1 −1

+2

The Poincaré polynomial of this arrangement is Poin(A, t) = 1 + 3t + 2t2.
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Hyperplane Arrangements and Open, Convex Sets
Let V be a real vector space,

A an arrangement, and

K ⊆ V an open convex set.

We will study the combinatorics of the pair (A,K).

Pairs (A,K) are interesting in the theory of arrangements, as they unify
the theory of central and affine arrangements while generalizing both.
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Regions and Intersections for a Pair

Let V be a real vector space, A an arrangement, and K ⊆ V an open
convex set. Moreover let

R(A) be the regions of A and

L(A) its intersections.

The regions of the pair (A,K) are the
regions of the arrangement which have
nonempty intersection with K, i.e.

R(A,K) = {R ∈ R(A) | R ∩ K 6= ∅}

The intersections of C are the
intersections X ∈ L(A) which cut
through K, i.e.,

L(A,K) = {X ∈ L(A) | X ∩ K 6= ∅}.

H

V

H
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Zaslavsky’s Theorem for Pairs

Let V be a real vector space, A an arrangement, and K ⊆ V an open
convex set. Moreover let

R(A) be the regions of A and

L(A) its intersections.

Theorem (Zaslavsky)

#R(A,K) =
∑

X∈L(A,K) |µ(V ,X )|

H

V

H

+1

−1

Zaslavsky’s theorem says: 1 + 1(1) = 2.
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The Poincaré Polynomial of a Pair

Define the Poincaré polynomial of a pair (A,K) in an arrangement by

Poin(A,K; t) =
∑

X∈L(A,K)

|µ(V ,X )|tcodim(X ).

Its coefficients are the Whitney numbers of the pair.

H1

H3

H2

V

H2

+1

−1

The Poincaré polynomial of this pair is Poin(A,K; t) = 1 + 1t.
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Example

Below is an example of a pair, together with its intersection poset

H1

H3

H2

V

H1 H2 H3

H1 ∩ H2

+1

−1 −1 −1

+1

The Poincaré polynomial of this pair is Poin(A,K; t) = 1 + 3t + t2.
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Below is an example of a pair, together with its intersection poset

H1

H3

H2

V

H1 H2 H3

H1 ∩ H2

+1

−1 −1 −1

+1

The Poincaré polynomial of this pair is Poin(C, t) = 1 + 3t + t2.
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The Varchenko-Gelfand Ring

based on joint work with Nick Proudfoot and Jayden Wang
arXiv 2208.04855
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A Ring from Regions

Definition

The Varchenko-Gelfand ring of A is the set of maps f : R(A)→ Z with
pointwise addition and multiplication.

Example

1

2

3

4

5

0

+
0

5

4

3

2

1

=
1

7

7

7

7

1
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pointwise addition and multiplication.

Example

1
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3

4
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0

•
0

5

4

3

2

1

=
0

10

12

12

10
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Generators for the Varchenko-Gelfand ring

Choose a set of normal vectors such that nH is the normal vector to
H ∈ A. Define a Heaviside function

xH(v) =

{
1 if 〈v , nH〉 > 0

0 else.

We can define this instead on regions, by choosing a representative point
v ∈ R for each region and defining xH(R) = xH(v).

Example

x1 =
1

1

0

0

0

1

x2 =
1

0

1

0

1

0

x3 =
1

1

1

0

0

0
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Generators for the Varchenko-Gelfand ring

Lemma

Together with 1, these Heaviside functions generate the
Varchenko-Gelfand ring as a Z-algebra.

x1 =
1

1

0

0

0

1

x2 =
1

0

1

0

1

0

x3 =
1

1

1

0

0

0

Let’s write out the following element as a polynomial in these Heaviside
functions.

x1x3(1− x2) =
0

1

0

0

0

0
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A Filtration by Degree

Let A be an arrangement of hyperplanes in Rd .

We just saw that the Varchenko-Gelfand ring is generated by
Heaviside functions defined by the hyperplanes of A.

It also has a filtration F : F0 ⊆ F1 ⊆ · · · by degree, i.e., the collection
of additive groups

F0 = Z− span{1}
F1 = Z− span{1} ∪ {xH | H ∈ A}

...

Fi = Z− span{monomials of degree ≤ i}.

The associated graded ring is V(A) =
⊕

i≥0 Fi/Fi−1.
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Two Classical Results

Theorem (Varchenko-Gelfand)

Each graded component Fi/Fi−1 of V(A) is a free Z-module with Z-basis
indexed by the no broken circuit sets of the arrangement.

Theorem (Rota)

For X ∈ L(A), we have

|µ(Rd ,X )| = #{no broken circuit sets whose join is X}.

Combining these theorems gives

Hilb(V(A), t) = Poin(A, t).

Gelfand-Rybnikov extended Varchenko-Gelfand’s work to oriented
matroids. Rota’s theorem still holds in that setting, and the Hilbert series
is the Poincaré polynomial of the oriented matroid.
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Example

Consider the arrangement in R2 with normal vectors
v1 = (1,−1), v2 = (0, 1), and v3 = (1, 1) (drawn below, left).

H1

H3

H2

Signed circuits: + +−, −−+

Unsigned circuit: {1, 2, 3}
No broken circuit sets: ∅, 1, 2, 3, 12, 13

Varchenko-Gelfand showed that

V(A) ∼= Z · {1} ⊕ Z · {x1, x2, x3} ⊕ Z · {x1x2, x1x3}

where Z · {−} denotes the Z-span of −. Then the Hilbert series is

Hilb(V(A), t) = 1 + 3t + 2t2

which matches the Poincaré polynomial we computed earlier.
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Varchenko–Gelfand Ring of a Pair

Definition

The Varchenko–Gelfand ring of a pair (A,K) is the set of maps
f : R(A,K)→ Z with pointwise addition and multiplication.

As in the original setting, this ring is generated by Heaviside functions and
admits a Heaviside filtration.

Theorem ((DB)PW, 2022)

Let E be the set of hyperplanes that cut through K and
R := Z[ei | i ∈ E ], we have isomorphisms

GR(A,K) ∼= R
/
I(A,K)

gr GR(A,K) ∼= R
/
J(A,K)

where the three quotienting ideals depend only on the conditional
oriented matroid of the pair.
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What is a conditional oriented matroid?

The short version:

The combinatorics of a hyperplane arrangement A is captured by an
oriented matroid.

The combinatorics of a pair (A,K) is captured by a conditional
oriented matroid.

To make this precise, we need a few vocabulary items...
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Signed Sets

Let E be a finite set. Recall,

A signed set is an ordered pair X = (X+,X−) of disjoint subsets.

The support of X = (X+,X−) is X := X+ ∪ X−.

The separating set of signed sets X ,Y is the set of coordinates in
the intersection of the supports at which X and Y differ, i.e.,

Sep(X ,Y ) := {i ∈ E | Xi = −Yi 6= 0}.

The composition X ◦ Y of two signed sets is a signed set defined by

(X ◦ Y )i :=

{
Xi if Xi 6= 0

Yi otherwise
for all i ∈ E .

where Xi = + if i ∈ X+, Xi = − if i ∈ X− and Xi = 0 otherwise.
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Conditional Oriented Matroids
Let E be a finite set.

Definition

A conditional oriented matroid on the ground set E is a collection L of
signed sets, called covectors, satisfying both of the following two
conditions:

If X ,Y ∈ L, then X ◦ −Y ∈ L.

If X ,Y ∈ L and i ∈ Sep(X ,Y ), then there exists Z ∈ L with Zi = 0
and Zj = (X ◦ Y )j for all j ∈ E \ Sep(X ,Y ).

1st axiom says: K is open
2nd axiom says: K is convex

Question. What is the analogue of the
Varchenko–Gelfand ring for a COM?
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Conditional Oriented Matroids
Let E be a finite set.

Definition

A conditional oriented matroid on the ground set E is a collection L of
signed sets, called covectors, satisfying both of the following two
conditions:

If X ,Y ∈ L, then X ◦ −Y ∈ L.

If X ,Y ∈ L and i ∈ Sep(X ,Y ), then there exists Z ∈ L with Zi = 0
and Zj = (X ◦ Y )j for all j ∈ E \ Sep(X ,Y ).

Question. What is the analogue of the
Gelfand-Rybnikov ring for a COM?

Now replace chambers with topes which are
signed sets X ∈ L whose support is the
whole ground set.
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Gelfand-Rybnikov Ring
Let L be a conditional oriented matroid.

Definition

The Gelfand-Rybnikov ring of L is the set of maps

f : {topes of L} → Z

with pointwise addition and multiplication.

Theorem ((DB)PW, 2022)

For R := Z[ei | i ∈ E ], we have

GR(L) ∼= R
/
IL and gr GR(L) ∼= R

/
JL.

where these ideals come from the set of signed sets X such that

X ◦ Y 6∈ L for all Y ∈ L.
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Special Case: Catalan Numbers

based on joint work with Christian Stump
arXiv 2204.05829
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What is the Shi arrangement?

Let ∆ ⊆ Φ+ ⊆ Φ be an irreducible crystallographic root system with a
choice of positive and simple roots.

The Shi arrangement of associated to Φ+ has hyperplanes

Hβ,k = {x ∈ Rn | 〈β, x〉 = k}

for β ∈ Φ+ and k = 0, 1.

Example

The (Type A) Shi arrangement Shi(Φ+) has hyperplanes

Hi ,j ,k = {x ∈ Rn | xi − xj = k}

for i < j ∈ [n] := {1, 2, . . . , n} and k = 0, 1.
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Weyl Cones

Every Shi arrangement has a reflection
subarrangement with hyperplanes

Hβ,0 = {x ∈ Rn | 〈β, x〉 = 0}

for β ∈ Φ+.

On the right, we show the Type A and Type
B Shi arrangements (in rank 2). The
hyperplanes of the reflection subarrangement
are bolded.
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Weyl Cones

Every chamber of the reflection
subarrangement defines a Weyl cone of the
Shi arrangement.

Fact

The Weyl cones of Shi(Φ+) are in bijection
with the elements of the corresponding Weyl
group W .

The region associated with the identity of
W is sometimes called the dominant cone.

On the right, we draw the A2 Shi
arrangement, and shade the dominant cone
(= Weyl cone associated to 123 ∈ Sn).
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Regions of Weyl Cones
The root poset is the poset on Φ+ with
order relations β ≺ γ if γ − β is a
nonnegative linear combination of simple
roots.

Theorem (Shi/Athanasiadis)

The regions of the dominant cone are in
bijection with antichains of the root poset.

Theorem (Armstrong-Reiner-Rhoades)

For w ∈W , the regions of the Weyl cone
are in bijection with antichains of

Φ+\inv(w−1)

where inv(w−1) is the inversion set of w−1.
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Intersection Posets of Weyl Cones

Theorem ((DB)S 2022)

The intersection poset of wC is the set of antichains of Φ+\inv(w−1)
ordered by inclusion.

If e is the identity element of W , theorem theorem says

Poin(eC , t) =
∑

anitchains
A⊆Φ+

t#A.

Recall that the W -Narayana numbers

N(Φ+, k) = #

{
antichains of Φ+

of cardinality k

}
refine the W -Catalan numbers

C (Φ+) =#
{

antichains of Φ+
}
.
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Intersection Posets of Weyl Cones

Theorem ((DB)S 2022)

The intersection poset of wC is the set of antichains of Φ+\inv(w−1)
ordered by inclusion.

Some comments on the proof:

This theorem has an elementary/geometric proof.

The interpretation of the Poincaré polynomial has a second proof via
commutative algebra.

In the remainder of this talk, I want to tell you a bit about the
algebraic proof.
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Back to the Varchenko–Gelfand Ring

1

0
0 3

0

+

0

0
1

−1

0

=

1

0
1 2

0
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Another Presentation
Let ∆ ⊂ Φ+ ⊂ Φ be an irreducible crystallographic root system with
choice of simple and positive roots.

Theorem (Chapoton)

When C is the domiant cone of Shi(Φ+), there exists an ideal
IΦ+ ⊆ Z[eH | H ∈ A] such that

VG (C) ∼= Z[eH | H ∈ A]/IΦ+

grVG (C) ∼= Z[eH | H ∈ A]/(indegIΦ+)

In particular, both have bases indexed by antichains and

Hilb(grVG (wC ); t) =
∑

anitchains
A⊆Φ+

t#A.

Once you know what to look for, Chapoton’s argument has the following
easy extension to all Weyl cones.
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Another Presentation
Let ∆ ⊂ Φ+ ⊂ Φ be an irreducible crystallographic root system with
choice of simple and positive roots.

Theorem (Chapoton + Armstrong-Reiner-Rhoades)

Let W be the Weyl group associated to Φ+ and w ∈W . Then there
exists an ideal IΦ+,w ⊆ Z[eH | H ∈ A] such that

VG (C) ∼= Z[eH | H ∈ A]/IΦ+,w

grVG (C) ∼= Z[eH | H ∈ A]/(indegIΦ+,w )

In particular, both have bases indexed by antichains and

Hilb(grVG (wC ); t) =
∑

anitchains
A⊆Φ+\inv(w−1)

t#A.

This extends to Shi deletions as well.

But how to get to the Poincaré
polynomial?
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A General Presentation

Let (A,K) be a pair with regions R(A,K). The following is a special case
of the theorem from (DB)PW earlier.

Theorem (DB, 21)

For convex sets defined by intersections of halfspaces, one obtains a
simpler set of generators G ⊆ Z[eH | H ∈ A] such that for any
“compatible” monomial order

GR(A,K) ∼= Z[eH | H ∈ A]/(G)

gr GR(A,K) ∼= Z[eH | H ∈ A]/(indegG)

In particular, the Hilbert series is

Hilb(gr GR(A,K); t) = Poin((A,K), t).

The K = V case was first proved by Varchenko and Gelfand.
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Combining these Results

Let ∆ ⊂ Φ+ ⊂ Φ be an irreducible crystallographic root system with
choice of simple and positive roots. Let W be the Weyl group associated
to Φ+ and w ∈W and w ∈W .

Poin(wC , t) = Hilb(grVG (wC ); t) =
∑

anitchains
A⊆Φ+\inv(w−1)

t#A.

This extends to Shi deletions as well.

Let’s look back at the dominant cone for Type A...
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Back to Narayna Numbers I

H3

H1

H2

On the previous slide, we saw that

Poin(σC , t) =
∑

anitchains
A⊆Φ+\inv(w−1)

t#A.

If w is the identity element of W

Poin(σC , t) =
∑

anitchains
A⊆Φ+

t#A

=
∑
k≥0

#

{
antichains of
cardinality k

}
tk .

These are precisely the W -Narayana
numbers.
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Back to Narayna Numbers II

H3

H1

H2

When W = Sn is the symmetric group

N(n, k) =
1

n

(
n

k

)(
n

k − 1

)
=#

{
antichains of Φ+

of cardinality k

}

which refine the Catalan numbers

Cn =#
{

antichains of Φ+
}
.
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Thank you for your attention!
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