Cones of Hyperplane Arrangements and the Varchenko-Gel'fand Ring

Galen Dorpalen-Barry
Ruhr-Universität Bochum

Berkeley Combinatorics Seminar
February 28, 2022

Hyperplane Arrangements \& Oriented Matroids

Linear Systems in \mathbb{R}^{d}

In linear algebra courses, we teach our students how to solve linear systems like this one

$$
\begin{gathered}
x-y=0 \\
y-z=0 \\
x-z=0
\end{gathered}
$$

That is, we ask them to find all points $(x, y, z) \in \mathbb{R}^{3}$ which are simultaneously contained in these three planes.

Today: We'll study collections of (hyper)planes in \mathbb{R}^{d}.

Arrangements of Hyperplanes

- A hyperplane is a affine linear subspace of codimension 1.
- A distinct collection of finitely-many hyperplanes is an arrangement.
- There are many ways to study arrangements discretely. Today we'll focus on
- regions (= open, connected components of the complement), and
- intersections (= nonempty intersections of some of the hyperplanes).

Example

This arrangement has 6 regions and the set of intersections is

$$
\mathbb{R}^{2}, H_{1}, H_{2}, H_{3}, H_{1} \cap H_{2} \cap H_{3}
$$

A Partially-Ordered Set

Let \mathcal{A} be an arrangement in \mathbb{R}^{d} with intersections $\mathcal{L}(\mathcal{A})$.

Example

- The elements of $\mathcal{L}(\mathcal{A})$ can be partially-ordered by reverse inclusion.
- On the right, we show an example of an arrangement \mathcal{A},
 together with the Hasse diagram of its poset of intersections $\mathcal{L}(\mathcal{A})$.

Möbius function

Let \mathcal{A} be an arrangement in \mathbb{R}^{d} with intersections $\mathcal{L}(\mathcal{A})$.

- Every poset comes equipped with a Möbius function $\mu(Y, X)$ for $Y<{ }_{p} X$.
- Here, we will be interested in the Möbius function of lower intervals $\left[\mathbb{R}^{d}, X\right]$ for $X \in \mathcal{L}(\mathcal{A})$.
- We'll define $\mu\left(\mathbb{R}^{d}, X\right)$ by example on the right side.

Möbius function

Let \mathcal{A} be an arrangement in \mathbb{R}^{d} with intersections $\mathcal{L}(\mathcal{A})$.

Example

- Every poset comes equipped with a Möbius function $\mu(Y, X)$ for $Y<{ }_{p} X$.
- Here, we will be interested in the Möbius function of lower intervals $\left[\mathbb{R}^{d}, X\right]$ for $X \in \mathcal{L}(\mathcal{A})$.
- We'll define $\mu\left(\mathbb{R}^{d}, X\right)$ by example on the right side.

For each X, we give the value of $\mu\left(\mathbb{R}^{d}, X\right)$ beside X.

Zaslavsky's Theorem

Let \mathcal{A} be an arrangement in \mathbb{R}^{d} with regions $\mathcal{R}(\mathcal{A})$ and intersections $\mathcal{L}(\mathcal{A})$.

Theorem (Zaslavsky)

$$
\# \mathcal{R}(\mathcal{A})=\sum_{X \in \mathcal{L}(\mathcal{A})}|\mu(V, X)|
$$

Example

$H_{1} \cap H_{2} \cap H_{3}+2$

Zaslavsky's theorem: $1+3(1)+2=6$.

Example: Braid Arrangement

Let A_{d-1} be the arrangement with the $\binom{d}{2}$ hyperplanes

$$
H_{i j}:=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid x_{i}-x_{j}=0\right\} \quad \text { for } i<j \in[d]:=\{1, \ldots, d\} .
$$

- The regions of the Braid Arrangement A_{d-1} are in bijection with the permutations \mathfrak{S}_{d} of d objects.
- The poset of (nonempty) intersections is isomorphic (as a poset) to the poset of (set) partitions Π_{d} of [d] ordered by refinement.
Zaslavsky's theorem says

$$
\# \mathfrak{S}_{d}=\sum_{\pi \in \Pi_{d}} \prod_{B \in \pi}(\# B-1)!
$$

Example: Braid Arrangement

Let A_{d-1} be the arrangement with the $\binom{d}{2}$ hyperplanes

$$
H_{i j}:=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid x_{i}-x_{j}=0\right\} \quad \text { for } i<j \in[d]:=\{1, \ldots, d\} .
$$

Zaslavsky's theorem says

$$
\# \mathfrak{S}_{d}=\sum_{\pi \in \Pi_{d}} \prod_{B \in \pi}(\# B-1)!
$$

When $d=3$, the intersection poset is isomorphic (as a poset) to

Example: Braid Arrangement

Let A_{d-1} be the arrangement with the $\binom{d}{2}$ hyperplanes

$$
H_{i j}:=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid x_{i}-x_{j}=0\right\} \quad \text { for } i<j \in[d]:=\{1, \ldots, d\} .
$$

Zaslavsky's theorem says

$$
\# \mathfrak{S}_{d}=\sum_{\pi \in \Pi_{d}} \prod_{B \in \pi}(\# B-1)!
$$

When $d=3$, the intersection poset is isomorphic (as a poset) to

Zaslavsky's theorem says that $1+3(1)+2=6=3$!.

The Poincaré Polynomial

Let \mathcal{A} be an arrangement in \mathbb{R}^{d} with regions $\mathcal{R}(\mathcal{A})$ and intersections $\mathcal{L}(\mathcal{A})$. Define the Poincaré polynomial of \mathcal{A} by

$$
\operatorname{Poin}(\mathcal{A}, t)=\sum_{X \in \mathcal{L}(\mathcal{A})}|\mu(V, X)| t^{d-\operatorname{dim}(X)}
$$

Example

The Poincaré polynomial of this arrangement is $\operatorname{Poin}(\mathcal{A}, t)=1+3 t+2 t^{2}$.

Example: Braid Arrangement

Let A_{d-1} be the arrangement with the $\binom{d}{2}$ hyperplanes

$$
H_{i j}:=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid x_{i}-x_{j}=0\right\} \quad \text { for } i<j \in[d]:=\{1, \ldots, d\}
$$

The Poincaré polynomial of A_{n-1} is

$$
\operatorname{Poin}\left(A_{n-1}, t\right)=\sum_{k \geq 1} \#\left\{\sigma \in \mathfrak{S}_{d} \mid \sigma \text { has } k \text { cycles }\right\} t^{k}
$$

Oriented Matroids

Let \mathcal{A} be an arrangement in \mathbb{R}^{d}.

- On the right, we show an example of an arrangement \mathcal{A}, together with a labelling of the regions by signed sets.
- Not shown: this labelling works for the lower-dimensional faces as well!
- These signed sets satisfy the (co)vector axioms and thus define an oriented matroid.

I won't formally state the (co)vector axioms in this talk, but we can go over them at the end if there is interest!

(Unoriented) Matroids

Chris and Eleanore recently discussed (unoriented) matroids.

- Every oriented matroid has an underlying unoriented matroid. Instead of looking at signed sets $X=\left(X^{+}, X^{-}\right)$, look at $\underline{X}=X^{+} \cup X^{-} .{ }^{1}$
- There is also a notion of oriented matroid duality. In our setting, the dual of the "facial oriented matroid" encodes (signed) linear dependencies among the normal vectors to the hyperplanes.

Example

Normal vectors: $v_{1}=(1,-1), v_{2}=(0,1)$, and $v_{3}=(1,1)$.

- The linear dependence $v_{1}+2 v_{2}-v_{3}=(0,0)$ corresponds to the signed set ++-
- The linear dependence $-v_{1}-2 v_{2}+v_{3}=(0,0)$ corresponds to the signed set --+

Useful Facts About Oriented Matroids

Consider an oriented matroid on the ground set [n].

- The signed sets associated to minimal dependencies among the normal vectors are called the signed circuits.
- If an oriented matroid has signed circuits \mathbf{C}, then the unsigned circuits of the underlying unoriented matroid are $\underline{\mathbf{C}}:=\{\underline{C} \mid C \in \mathbf{C}\}$ We can break an unsigned circuit by removing the smallest entry of \underline{C}.
- Any subset $N \subseteq[n]$ NOT containing a broken circuit is a no broken circuit set of the oriented matroid.

Example

Normal vectors: $v_{1}=(1,-1), v_{2}=(0,1)$, and $v_{3}=(1,1)$.

- Signed circuits: ++- , - +
- Unsigned circuit: $\{1,2,3\}$
- No broken circuit sets: $\emptyset, 1,2,3,12,13$

The Varchenko-Gel'fand Ring

A Ring from Regions

Let \mathcal{A} be an arrangememnt of hyperplanes in \mathbb{R}^{d} with regions $\mathcal{R}(\mathcal{A})$.

Definition

The Varchenko-Gel'fand ring of \mathcal{A} is the set of maps $f: \mathcal{R}(\mathcal{A}) \rightarrow \mathbb{Z}$ with pointwise addition and multiplication.

Example

A Ring from Regions

Let \mathcal{A} be an arrangememnt of hyperplanes in \mathbb{R}^{d} with regions $\mathcal{R}(\mathcal{A})$.

Definition

The Varchenko-Gel'fand ring of \mathcal{A} is the set of maps $f: \mathcal{R}(\mathcal{A}) \rightarrow \mathbb{Z}$ with pointwise addition and multiplication.

Example

Generators for the Varchenko-Gel'fand ring

Let \mathcal{A} be an arrangement of hyperplanes in \mathbb{R}^{d}.
Choose a set of normal vectors such that n_{H} is the normal vector to $H \in \mathcal{A}$. Define a Heaviside function

$$
x_{H}(v)= \begin{cases}1 & \text { if }\left\langle v, n_{H}\right\rangle>0 \\ 0 & \text { else }\end{cases}
$$

We can define this instead on regions, by choosing a representative point $v \in R$ for each region and defining $x_{H}(R)=x_{H}(v)$.

Example

Generators for the Varchenko-Gel'fand ring

Lemma

Together with 1, these Heaviside functions generate the Varchenko-Gel'fand ring as a \mathbb{Z}-algebra.

Let's write out the following element as a polynomial in these Heaviside functions.

Generators for the Varchenko-Gel'fand ring

Lemma

Together with 1, these Heaviside functions generate the Varchenko-Gel'fand ring as a \mathbb{Z}-algebra.

Let's write out the following element as a polynomial in these Heaviside functions.

Example: Braid Arrangement

Definition

The Varchenko-Gel'fand ring of \mathcal{A} is the set of maps $f: \mathcal{R}(\mathcal{A}) \rightarrow \mathbb{Z}$ with pointwise addition and multiplication.

Lemma

These Heaviside functions generate the Varchenko-Gel'fand ring as a \mathbb{Z}-algebra.

Let A_{d-1} be the Braid Arrangement. Regions are in bijection with permutations of d objects, and moreover

$$
x_{i j}(\sigma)= \begin{cases}1 & \text { if } \sigma(i)<\sigma(j) \\ 0 & \text { else }\end{cases}
$$

for $i<j$ in [n]. Our lemma says that we can describe $\sigma \in \mathfrak{S}_{d}$ by its inversion set.

A Filtration by Degree

Let \mathcal{A} be an arrangement of hyperplanes in \mathbb{R}^{d}.

- We just saw that the Varchenko-Gel'fand ring is generated by Heaviside functions defined by the hyperplanes of \mathcal{A}.
- It also has a filtration $\mathcal{F}: F_{0} \subseteq F_{1} \subseteq \cdots$ by degree, i.e., the collection of additive groups

$$
\begin{aligned}
F_{0} & =\mathbb{Z}-\operatorname{span}\{1\} \\
F_{1} & =\mathbb{Z}-\operatorname{span}\{1\} \cup\left\{x_{H} \mid H \in \mathcal{A}\right\} \\
\vdots & \\
F_{i} & =\mathbb{Z}-\operatorname{span}\{\text { monomials of degree } \leq i\} .
\end{aligned}
$$

- The associated graded ring is $\mathcal{V G}(\mathcal{A})=\bigoplus_{i \geq 0} F_{i} / F_{i-1}$ and its Hilbert series is
$\operatorname{Hilb}(\mathcal{V G}(\mathcal{A}), t)=\sum_{i \geq 0} \mathrm{rk}_{\mathbb{Z}}\left(F_{i} / F_{i-1}\right) t^{i}$.

Some Results

Let \mathcal{A} be an arrangement of hyperplanes in \mathbb{R}^{d} with intersection poset $\mathcal{L}(\mathcal{A})$.

Theorem (Varchenko-Gel'fand)

Each graded component F_{i} / F_{i-1} of $\mathcal{V G}(\mathcal{A})$ is a free \mathbb{Z}-module with \mathbb{Z}-basis indexed by the no broken circuit sets of the arrangement.

Theorem (Rota)

For $X \in \mathcal{L}(\mathcal{A})$, we have

$$
\left|\mu\left(\mathbb{R}^{d}, X\right)\right|=\#\{\text { no broken circuit sets whose join is } X\} .
$$

Combining these theorems gives

$$
\operatorname{Hilb}(\mathcal{V} \mathcal{G}(\mathcal{A}), t)=\operatorname{Poin}(\mathcal{A}, t)
$$

Example

Consider the arrangement in \mathbb{R}^{2} with normal vectors $v_{1}=(1,-1), v_{2}=(0,1)$, and $v_{3}=(1,1)$ (drawn below, left).

- Signed circuits:,++---+
- Unsigned circuit: $\{1,2,3\}$
- No broken circuit sets: $\emptyset, 1,2,3,12,13$

Varchenko-Gel'fand showed that

$$
\mathcal{V G}(\mathcal{A}) \cong \mathbb{Z} \cdot\{1\} \oplus \mathbb{Z} \cdot\left\{x_{1}, x_{2}, x_{3}\right\} \oplus \mathbb{Z} \cdot\left\{x_{1} x_{2}, x_{1} x_{3}\right\}
$$

where $\mathbb{Z} \cdot\{-\}$ denotes the \mathbb{Z}-span of - . Then the Hilbert series is

$$
\operatorname{Hilb}(\mathcal{V G}(\mathcal{A}), t)=1+3 t+2 t^{2}
$$

which matches the Poincaré polynomial we computed earlier.

A Generalization

Instead of looking at arrangements \mathcal{A}, look at cones.

- A cone \mathcal{K} of an arrangement \mathcal{A} is an intersection of (open) halfspaces defined by some of the hyperplanes of \mathcal{A}.
- Cones are interesting in the theory of arrangements, as they unify the theory of central and affine arrangements while generalizing both.
Below are two examples of a cones in arrangements.

Cones of Arrangements

Let \mathcal{K} be a cone of an arrangement $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$.

- The regions of a cone \mathcal{K} are the regions of the arrangement which lie inside the open cone.
- The intersections of such a cone $\mathcal{L}(\mathcal{K})$ are the intersections X of the arrangement such that $X \cap \mathcal{K} \neq \emptyset$.
- It turns out that $\mathcal{L}(\mathcal{K})$ is an order ideal of $\mathcal{L}(\mathcal{A})$, so that it makes sense to define

$$
\operatorname{Poin}(\mathcal{K}, t)=\sum_{X \in \mathcal{L}(\mathcal{K})}\left|\mu\left(\mathbb{R}^{d}, X\right)\right| t^{d-\operatorname{dim}(X)}
$$

Example: Cones of Arrangements

Consider the shaded cone \mathcal{K} in the arrangement in \mathbb{R}^{2} (drawn below).

- This cone has two chambers.
- It has intersections $\mathbb{R}^{2}, \mathrm{H}_{2}$.
- Its Poincaré polynomial is $\operatorname{Poin}(\mathcal{K}, t)=1+t$.

Cones of Arrangements

Let \mathcal{K} be a cone of an arrangement $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ and let $N B C(\mathcal{A})$ denote the set of no broken circuit monomials of the (unoriented) matroid of \mathcal{A}.

- Say that $N \in N B C(\mathcal{A})$ is a \mathcal{K}-no-broken-circuit set if the intersection $\bigcap_{i \in N} H_{i}$ has a nonempty intersection with \mathcal{K}.

Example

Consider the arrangement in \mathbb{R}^{2} with normal vectors $v_{1}=(1,-1), v_{2}=(0,1)$, and $v_{3}=(1,1)$ (drawn below, left).
H_{3}

- Signed circuits:,++---+
- Unsigned circuit: $\{1,2,3\}$
- No broken circuit sets: $\emptyset, 1,2,3,12,13$
- K-no-broken-circuits: $\emptyset, 2$

Generalized Statement of Results

Let \mathcal{K} be a cone of an arrangement \mathcal{A} in \mathbb{R}^{d}.

Theorem (DB)

Each graded component F_{i} / F_{i-1} of $\mathcal{V} \mathcal{G}(\mathcal{K})$ is a free \mathbb{Z}-module with \mathbb{Z}-basis indexed by \mathcal{K}-no broken circuit sets of the arrangement. Moreover

$$
\operatorname{Hilb}(\mathcal{V} \mathcal{G}(\mathcal{K}), t)=\operatorname{Poin}(\mathcal{K}, t)
$$

This theorem is a corollary to the main theorem of the paper. The main theorem defines a certain collection of polynomials \mathcal{G} and uses them to give presentations for the Varchenko-Gel'fand ring and its associated graded:

$$
\begin{aligned}
V G(\mathcal{K}) & \cong \mathbb{Z}\left[e_{1}, \ldots, e_{n}\right] /(\mathcal{G}) \\
\mathcal{V G}(\mathcal{K}) & \cong \mathbb{Z}\left[e_{1}, \ldots, e_{n}\right] /\left(i n_{\text {deg }} \mathcal{G}\right)
\end{aligned}
$$

where $i n_{d e g} \mathcal{G}$ denotes the top-degree form of $g \in \mathcal{G}$.
I won't state these precisely in this talk, but we can discuss them at the end, if there is interest!

A Consequence of the Approach

Warning: This section uses several terms that I haven't defined. Some useful references:

- Section 1 of "Gröbner Bases and Convex Polytopes" by Sturmfels
- Chapter 2 of "Ideals, Varieties, and Algorithms" by Cox, Little, O'Shea

Working over a Field

Let \mathcal{K} be a cone of an arrangement \mathcal{A} in \mathbb{R}^{d}. The same arguments work over a field \mathbb{F} (and in fact they're even easier!)

Corollary (DB)

Using the same collection of polynomials \mathcal{G} as in the integer case, we have

$$
\begin{aligned}
& V G(\mathcal{K}) \cong \mathbb{F}\left[e_{1}, \ldots, e_{n}\right] /(\mathcal{G}) \\
& \mathcal{V G}(\mathcal{K}) \cong \mathbb{F}\left[e_{1}, \ldots, e_{n}\right] /\left(i n_{d e g} \mathcal{G}\right)
\end{aligned}
$$

where \mathcal{G} is a Gröbner basis for (\mathcal{G}) (we assume that the given monomial order \prec satisfies $e_{1} \prec \cdots \prec e_{n}$).

In the next few slides, we'll look at one consequence of this extension.

Quadratic Gröbner bases

Let R be a commutative standard graded \mathbb{F}-algebra, i.e. $R \cong \mathbb{F}\left[e_{1}, \ldots, e_{n}\right] / I$ where I is a homogeneous ideal and each e_{i} has degree exactly 1 . Suppose

$$
F_{\bullet}: \cdots \xrightarrow{\varphi_{3}} R^{\beta_{2}} \xrightarrow{\varphi_{2}} R^{\beta_{1}} \xrightarrow{\varphi_{1}} R \longrightarrow \mathbb{F}
$$

is a minimal free resolution of the R-module $\mathbb{F}=R / R_{+}$where R_{+}is the maximal homogeneous ideal, consisting of all elements of positive degree.

Definition

R is Koszul if the nonzero entries of each φ_{i} matrix are homogeneous of degree 1.

Theorem

Let I be a homogeneous ideal in $\mathbb{F}\left[e_{1}, \ldots, e_{n}\right]$. Suppose there exists a monomial order \prec and quadratic Gröbner basis \mathcal{G} generating I. Then $R=\mathbb{F}\left[e_{1}, \ldots, e_{n}\right] / l$ is Koszul.

Quadratic Gröbner bases

```
Theorem
Let I be a homogeneous ideal in }\mathbb{F}[\mp@subsup{e}{1}{},\ldots,\mp@subsup{e}{n}{}]\mathrm{ . Suppose there exists a
monomial order }\prec\mathrm{ and quadratic Gröbner basis }\mathcal{G}\mathrm{ generating I. Then
R=\mathbb{F}[\mp@subsup{e}{1}{},\ldots,\mp@subsup{e}{n}{}]// is Koszul.
```

Takeaway: If there is a family of arrangements (or cones) for which $i n_{d e g}(\mathcal{G})$ is quadratic, then this theorem tells us that $\mathcal{V} \mathcal{G}(\mathcal{A})$ will be Koszul.

Quadratic Gröbner bases

One such family are supersolvable arrangements, of which the Braid Arrangement A_{d-1} is an example.

Theorem (Björner-Ziegler)

Let \mathcal{A} be a supersolvable arrangement and M its underlying (unoriented) matroid. Then the minimal broken circuits of M (under inclusion) have cardinality 2.

Its not immediate, but one can use this Björner-Ziegler result in conjunction with the quadtratic Gröbner basis result to show:

Theorem (DB)

If \mathcal{A} is a supersolvable arrangement, then $\mathcal{V} \mathcal{G}(\mathcal{A})$ is Koszul.

Questions for the Audience

- (for early graduate students) Are there places in your research where a proof had implications not directly implied by the theorem you wanted to prove?
- (for everyone) The final theorem in the talk was a commutative version of a theorem of Irena Peeva (she proved the equivalent statement for the Orlik-Solomon algebra). Are there other statements from the Orlik-Solomon algebra, which have analogues for the Varchenko-Gel'fand ring?
- (for everyone) In the Braid Arrangement, cones correspond to posets on d. There are "poset cones" \mathcal{K}_{P} in the Braid Arrangement for which $\mathcal{V G}\left(\mathcal{K}_{P}\right)$ is not Koszul. Is there some interesting family of posets for which $\mathcal{V} \mathcal{G}\left(\mathcal{K}_{P}\right)$ is Koszul? ${ }^{2}$

[^0]
Thank you for listening! arXiv:2104.02740v1

[^0]: ${ }^{2}$ If you find one, I have a follow-up question! (But its too technical for today!)

