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Linear Systems in Rd

In linear algebra courses, we teach our students how to solve linear
systems like this one

x − y = 0

y − z = 0

x − z = 0.

That is, we ask them to find all points (x , y , z) ∈ R3 which are
simultaneously contained in these three planes.

Today: We’ll study collections of (hyper)planes in Rd .
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Arrangements of Hyperplanes

A hyperplane is a affine linear
subspace of codimension 1.

A distinct collection of
finitely-many hyperplanes is an
arrangement.

There are many ways to study
arrangements discretely. Today
we’ll focus on

regions (= open, connected
components of the
complement), and
intersections (= nonempty
intersections of some of the
hyperplanes).

Example

H1

H3

H2

This arrangement has 6 regions and
the set of intersections is

R2, H1,H2,H3,H1 ∩ H2 ∩ H3
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A Partially-Ordered Set

Let A be an arrangement in Rd with intersections L(A).

The elements of L(A) can be
partially-ordered by reverse
inclusion.

On the right, we show an
example of an arrangement A,
together with the Hasse diagram
of its poset of intersections
L(A).

Example

H1

H3

H2

The poset of intersections is

R2

H1 H2 H3

H1 ∩ H2 ∩ H3
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Möbius function

Let A be an arrangement in Rd with intersections L(A).

Every poset comes equipped
with a Möbius function µ(Y ,X )
for Y <P X .

Here, we will be interested in
the Möbius function of lower
intervals [Rd ,X ] for X ∈ L(A).

We’ll define µ(Rd ,X ) by
example on the right side.

Example

R2

H1 H2 H3

H1 ∩ H2 ∩ H3
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Möbius function

Let A be an arrangement in Rd with intersections L(A).

Every poset comes equipped
with a Möbius function µ(Y ,X )
for Y <P X .

Here, we will be interested in
the Möbius function of lower
intervals [Rd ,X ] for X ∈ L(A).

We’ll define µ(Rd ,X ) by
example on the right side.

Example

For each X , we give the value of
µ(Rd ,X ) beside X .

R2

H1 H2 H3

H1 ∩ H2 ∩ H3

+1

−1 −1 −1

+2
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Zaslavsky’s Theorem

Let A be an arrangement in Rd with regions R(A) and intersections L(A).

Theorem (Zaslavsky)

#R(A) =
∑

X∈L(A) |µ(V ,X )|

Example

H1

H3

H2

R2

H1 H2 H3

H1 ∩ H2 ∩ H3

+1

−1 −1 −1

+2

Zaslavsky’s theorem: 1 + 3(1) + 2 = 6.
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Example: Braid Arrangement

Let Ad−1 be the arrangement with the
(d

2

)
hyperplanes

Hij := {x ∈ Rd | xi − xj = 0} for i < j ∈ [d ] := {1, . . . , d}.

The regions of the Braid Arrangement Ad−1 are in bijection with the
permutations Sd of d objects.

The poset of (nonempty) intersections is isomorphic (as a poset) to
the poset of (set) partitions Πd of [d ] ordered by refinement.

Zaslavsky’s theorem says

#Sd =
∑
π∈Πd

∏
B∈π

(#B − 1)!
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Example: Braid Arrangement

Let Ad−1 be the arrangement with the
(d

2

)
hyperplanes

Hij := {x ∈ Rd | xi − xj = 0} for i < j ∈ [d ] := {1, . . . , d}.

Zaslavsky’s theorem says

#Sd =
∑
π∈Πd

∏
B∈π

(#B − 1)!

When d = 3, the intersection poset is isomorphic (as a poset) to

1|2|3

12|3 1|23 13|2

123
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Example: Braid Arrangement

Let Ad−1 be the arrangement with the
(d

2

)
hyperplanes

Hij := {x ∈ Rd | xi − xj = 0} for i < j ∈ [d ] := {1, . . . , d}.

Zaslavsky’s theorem says

#Sd =
∑
π∈Πd

∏
B∈π

(#B − 1)!

When d = 3, the intersection poset is isomorphic (as a poset) to

1|2|3

12|3 1|23 13|2

123

+1

−1 −1 −1

+2

Zaslavsky’s theorem says that 1 + 3(1) + 2 = 6 = 3!.
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The Poincaré Polynomial

Let A be an arrangement in Rd with regions R(A) and intersections L(A).
Define the Poincaré polynomial of A by

Poin(A, t) =
∑

X∈L(A)

|µ(V ,X )|td−dim(X ).

Example

H1

H3

H2

R2

H1 H2 H3

H1 ∩ H2 ∩ H3

+1

−1 −1 −1

+2

The Poincaré polynomial of this arrangement is Poin(A, t) = 1 + 3t + 2t2.
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Example: Braid Arrangement

Let Ad−1 be the arrangement with the
(d

2

)
hyperplanes

Hij := {x ∈ Rd | xi − xj = 0} for i < j ∈ [d ] := {1, . . . , d}.

The Poincaré polynomial of An−1 is

Poin(An−1, t) =
∑
k≥1

#{σ ∈ Sd | σ has k cycles} tk .
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Oriented Matroids

Let A be an arrangement in Rd .

On the right, we show an
example of an arrangement A,
together with a labelling of the
regions by signed sets.

Not shown: this labelling works
for the lower-dimensional faces
as well!

These signed sets satisfy the
(co)vector axioms and thus
define an oriented matroid.

H1

H3

H2

+ + +

+−+

−+ +

−−−

−+−

+−−

I won’t formally state the (co)vector axioms in this talk, but we can go over them at the end if there is interest!
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(Unoriented) Matroids

Chris and Eleanore recently discussed (unoriented) matroids.

Every oriented matroid has an underlying unoriented matroid. Instead
of looking at signed sets X = (X+,X−), look at X = X+ ∪ X−. 1

There is also a notion of oriented matroid duality. In our setting, the
dual of the “facial oriented matroid” encodes (signed) linear
dependencies among the normal vectors to the hyperplanes.

Example

Normal vectors: v1 = (1,−1), v2 = (0, 1), and v3 = (1, 1).

H1

H3

H2

The linear dependence v1 + 2v2 − v3 = (0, 0)
corresponds to the signed set + +−
The linear dependence −v1 − 2v2 + v3 = (0, 0)
corresponds to the signed set −−+

1
The opposite is not true, see Bland-Las Vergnas “Orientability of Matroids.”
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Useful Facts About Oriented Matroids

Consider an oriented matroid on the ground set [n].

The signed sets associated to minimal dependencies among the
normal vectors are called the signed circuits.
If an oriented matroid has signed circuits C, then the unsigned circuits
of the underlying unoriented matroid are C := {C | C ∈ C} We can
break an unsigned circuit by removing the smallest entry of C .
Any subset N ⊆ [n] NOT containing a broken circuit is a no broken
circuit set of the oriented matroid.

Example

Normal vectors: v1 = (1,−1), v2 = (0, 1), and v3 = (1, 1).

H1

H3

H2

Signed circuits: + +−, −−+

Unsigned circuit: {1, 2, 3}
No broken circuit sets: ∅, 1, 2, 3, 12, 13
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The Varchenko-Gel’fand Ring
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A Ring from Regions

Let A be an arrangememnt of hyperplanes in Rd with regions R(A).

Definition

The Varchenko-Gel’fand ring of A is the set of maps f : R(A)→ Z with
pointwise addition and multiplication.

Example

1

2

3

4

5

0

+
0

5

4

3

2

1

=
1

7

7

7

7

1

Galen (RUB) Cones & Varchenko-Gel’fand February 28, 2022 18 / 38



A Ring from Regions

Let A be an arrangememnt of hyperplanes in Rd with regions R(A).

Definition

The Varchenko-Gel’fand ring of A is the set of maps f : R(A)→ Z with
pointwise addition and multiplication.

Example

1

2

3

4

5

0

•
0

5

4

3

2

1

=
0

10

12

12

10

0
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Generators for the Varchenko-Gel’fand ring

Let A be an arrangement of hyperplanes in Rd .
Choose a set of normal vectors such that nH is the normal vector to
H ∈ A. Define a Heaviside function

xH(v) =

{
1 if 〈v , nH〉 > 0

0 else.

We can define this instead on regions, by choosing a representative point
v ∈ R for each region and defining xH(R) = xH(v).

Example

x1 =
1

1

0

0

0

1

x2 =
1

0

1

0

1

0

x3 =
1

1

1

0

0

1

Galen (RUB) Cones & Varchenko-Gel’fand February 28, 2022 20 / 38



Generators for the Varchenko-Gel’fand ring

Lemma

Together with 1, these Heaviside functions generate the
Varchenko-Gel’fand ring as a Z-algebra.

x1 =
1

1

0

0

0

1

x2 =
1

0

1

0

1

0

x3 =
1

1

1

0

0

1

Let’s write out the following element as a polynomial in these Heaviside
functions.

x1x3(1− x2) =
0

1

0

0

0

0

Galen (RUB) Cones & Varchenko-Gel’fand February 28, 2022 21 / 38



Generators for the Varchenko-Gel’fand ring

Lemma

Together with 1, these Heaviside functions generate the
Varchenko-Gel’fand ring as a Z-algebra.

x1 =
1

1

0

0

0

1

x2 =
1

0

1

0

1

0

x3 =
1

1

1

0

0

1

Let’s write out the following element as a polynomial in these Heaviside
functions.

x1x3(1− x2) =
0

1

0

0

0

0
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Example: Braid Arrangement

Definition

The Varchenko-Gel’fand ring of A is the set of maps f : R(A)→ Z with
pointwise addition and multiplication.

Lemma

These Heaviside functions generate the Varchenko-Gel’fand ring as a
Z-algebra.

Let Ad−1 be the Braid Arrangement. Regions are in bijection with
permutations of d objects, and moreover

xij(σ) =

{
1 if σ(i) < σ(j)

0 else

for i < j in [n]. Our lemma says that we can describe σ ∈ Sd by its
inversion set.
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A Filtration by Degree

Let A be an arrangement of hyperplanes in Rd .

We just saw that the Varchenko-Gel’fand ring is generated by
Heaviside functions defined by the hyperplanes of A.

It also has a filtration F : F0 ⊆ F1 ⊆ · · · by degree, i.e., the collection
of additive groups

F0 = Z− span{1}
F1 = Z− span{1} ∪ {xH | H ∈ A}

...

Fi = Z− span{monomials of degree ≤ i}.

The associated graded ring is VG(A) =
⊕

i≥0 Fi/Fi−1 and its Hilbert
series is

Hilb(VG(A), t) =
∑
i≥0

rkZ(Fi/Fi−1) t i .
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Some Results

Let A be an arrangement of hyperplanes in Rd with intersection poset
L(A).

Theorem (Varchenko-Gel’fand)

Each graded component Fi/Fi−1 of VG(A) is a free Z-module with
Z-basis indexed by the no broken circuit sets of the arrangement.

Theorem (Rota)

For X ∈ L(A), we have

|µ(Rd ,X )| = #{no broken circuit sets whose join is X}.

Combining these theorems gives

Hilb(VG(A), t) = Poin(A, t).
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Example

Consider the arrangement in R2 with normal vectors
v1 = (1,−1), v2 = (0, 1), and v3 = (1, 1) (drawn below, left).

H1

H3

H2

Signed circuits: + +−, −−+

Unsigned circuit: {1, 2, 3}
No broken circuit sets: ∅, 1, 2, 3, 12, 13

Varchenko-Gel’fand showed that

VG(A) ∼= Z · {1} ⊕ Z · {x1, x2, x3} ⊕ Z · {x1x2, x1x3}

where Z · {−} denotes the Z-span of −. Then the Hilbert series is

Hilb(VG(A), t) = 1 + 3t + 2t2

which matches the Poincaré polynomial we computed earlier.
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A Generalization

Instead of looking at arrangements A, look at cones.

A cone K of an arrangement A is an intersection of (open) halfspaces
defined by some of the hyperplanes of A.

Cones are interesting in the theory of arrangements, as they unify the
theory of central and affine arrangements while generalizing both.

Below are two examples of a cones in arrangements.
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Cones of Arrangements

Let K be a cone of an arrangement A = {H1, . . . ,Hn}.
The regions of a cone K are the regions of the arrangement which lie
inside the open cone.

The intersections of such a cone L(K) are the intersections X of the
arrangement such that X ∩ K 6= ∅.
It turns out that L(K) is an order ideal of L(A), so that it makes
sense to define

Poin(K, t) =
∑

X∈L(K)

|µ(Rd ,X )|td−dim(X ).
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Example: Cones of Arrangements

Consider the shaded cone K in the arrangement in R2 (drawn below).

H1

H3

H2

This cone has two chambers.

It has intersections R2, H2.

Its Poincaré polynomial is Poin(K, t) = 1 + t.
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Cones of Arrangements

Let K be a cone of an arrangement A = {H1, . . . ,Hn} and let NBC (A)
denote the set of no broken circuit monomials of the (unoriented) matroid
of A.

Say that N ∈ NBC (A) is a K-no-broken-circuit set if the intersection⋂
i∈N Hi has a nonempty intersection with K.

Example

Consider the arrangement in R2 with normal vectors
v1 = (1,−1), v2 = (0, 1), and v3 = (1, 1) (drawn below, left).

H1

H3

H2

Signed circuits: + +−, −−+

Unsigned circuit: {1, 2, 3}
No broken circuit sets: ∅, 1, 2, 3, 12, 13

K-no-broken-circuits: ∅, 2
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Generalized Statement of Results

Let K be a cone of an arrangement A in Rd .

Theorem (DB)

Each graded component Fi/Fi−1 of VG(K) is a free Z-module with
Z-basis indexed by K-no broken circuit sets of the arrangement. Moreover

Hilb(VG(K), t) = Poin(K, t).

This theorem is a corollary to the main theorem of the paper. The main
theorem defines a certain collection of polynomials G and uses them to give
presentations for the Varchenko-Gel’fand ring and its associated graded:

VG (K) ∼= Z[e1, . . . , en]/(G)

VG(K) ∼= Z[e1, . . . , en]/(indegG)

where indegG denotes the top-degree form of g ∈ G.
I won’t state these precisely in this talk, but we can discuss them at the end, if there is interest!
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A Consequence of the Approach

Warning: This section uses several terms that I haven’t defined. Some
useful references:

Section 1 of “Gröbner Bases and Convex Polytopes” by Sturmfels

Chapter 2 of “Ideals, Varieties, and Algorithms” by Cox, Little,
O’Shea
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Working over a Field

Let K be a cone of an arrangement A in Rd . The same arguments work
over a field F (and in fact they’re even easier!)

Corollary (DB)

Using the same collection of polynomials G as in the integer case, we have

VG (K) ∼= F[e1, . . . , en]/(G)

VG(K) ∼= F[e1, . . . , en]/(indegG)

where G is a Gröbner basis for (G) (we assume that the given monomial
order ≺ satisfies e1 ≺ · · · ≺ en).

In the next few slides, we’ll look at one consequence of this extension.
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Quadratic Gröbner bases

Let R be a commutative standard graded F-algebra, i.e.
R ∼= F[e1, . . . , en]/I where I is a homogeneous ideal and each ei has
degree exactly 1. Suppose

F• : · · · ϕ3−→ Rβ2
ϕ2−→ Rβ1

ϕ1−→ R −→ F

is a minimal free resolution of the R-module F = R/R+ where R+ is the
maximal homogeneous ideal, consisting of all elements of positive degree.

Definition

R is Koszul if the nonzero entries of each ϕi matrix are homogeneous of
degree 1.

Theorem

Let I be a homogeneous ideal in F[e1, . . . , en]. Suppose there exists a
monomial order ≺ and quadratic Gröbner basis G generating I . Then
R = F[e1, . . . , en]/I is Koszul.
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Quadratic Gröbner bases

Theorem

Let I be a homogeneous ideal in F[e1, . . . , en]. Suppose there exists a
monomial order ≺ and quadratic Gröbner basis G generating I . Then
R = F[e1, . . . , en]/I is Koszul.

Takeaway: If there is a family of arrangements (or cones) for which
indeg (G) is quadratic, then this theorem tells us that VG(A) will be Koszul.
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Quadratic Gröbner bases

One such family are supersolvable arrangements, of which the Braid
Arrangement Ad−1 is an example.

Theorem (Björner-Ziegler)

Let A be a supersolvable arrangement and M its underlying (unoriented)
matroid. Then the minimal broken circuits of M (under inclusion) have
cardinality 2.

Its not immediate, but one can use this Björner-Ziegler result in
conjunction with the quadtratic Gröbner basis result to show:

Theorem (DB)

If A is a supersolvable arrangement, then VG(A) is Koszul.
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Questions for the Audience

(for early graduate students) Are there places in your research where
a proof had implications not directly implied by the theorem you
wanted to prove?

(for everyone) The final theorem in the talk was a commutative
version of a theorem of Irena Peeva (she proved the equivalent
statement for the Orlik-Solomon algebra). Are there other statements
from the Orlik-Solomon algebra, which have analogues for the
Varchenko-Gel’fand ring?

(for everyone) In the Braid Arrangement, cones correspond to posets
on d . There are “poset cones” KP in the Braid Arrangement for
which VG(KP) is not Koszul. Is there some interesting family of
posets for which VG(KP) is Koszul?2

2If you find one, I have a follow-up question! (But its too technical for today!)
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Thank you for listening!
arXiv:2104.02740v1
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