Cones of Hyperplane Arrangements and the Varchenko-Gel'fand Ring

Galen Dorpalen-Barry

Ruhr-Universität Bochum

Berkeley Combinatorics Seminar February 28, 2022

Hyperplane Arrangements & Oriented Matroids

In linear algebra courses, we teach our students how to solve linear systems like this one

$$\begin{aligned} x - y &= 0\\ y - z &= 0\\ x - z &= 0. \end{aligned}$$

That is, we ask them to find all points $(x, y, z) \in \mathbb{R}^3$ which are simultaneously contained in these three planes.

Today: We'll study collections of (hyper)planes in \mathbb{R}^d .

Arrangements of Hyperplanes

- A *hyperplane* is a affine linear subspace of codimension 1.
- A distinct collection of finitely-many hyperplanes is an *arrangement*.
- There are many ways to study arrangements discretely. Today we'll focus on
 - regions (= open, connected components of the complement), and
 - intersections (= nonempty intersections of some of the hyperplanes).

Example

This arrangement has 6 regions and the set of intersections is

 $\mathbb{R}^2,\ H_1,H_2,H_3,H_1\cap H_2\cap H_3$

A Partially-Ordered Set

Let \mathcal{A} be an arrangement in \mathbb{R}^d with intersections $\mathcal{L}(\mathcal{A})$.

- The elements of $\mathcal{L}(\mathcal{A})$ can be *partially-ordered* by reverse inclusion.
- On the right, we show an example of an arrangement A, together with the Hasse diagram of its poset of intersections L(A).

Example

The poset of intersections is

Let \mathcal{A} be an arrangement in \mathbb{R}^d with intersections $\mathcal{L}(\mathcal{A})$.

- Every poset comes equipped with a Möbius function μ(Y, X) for Y <_P X.
- Here, we will be interested in the Möbius function of *lower intervals* [ℝ^d, X] for X ∈ L(A).
- We'll define µ(ℝ^d, X) by example on the right side.

Let \mathcal{A} be an arrangement in \mathbb{R}^d with intersections $\mathcal{L}(\mathcal{A})$.

- Every poset comes equipped with a Möbius function μ(Y, X) for Y <_P X.
- Here, we will be interested in the Möbius function of *lower intervals* [ℝ^d, X] for X ∈ L(A).
- We'll define µ(ℝ^d, X) by example on the right side.

Example

For each X, we give the value of $\mu(\mathbb{R}^d, X)$ beside X.

Zaslavsky's Theorem

Let \mathcal{A} be an arrangement in \mathbb{R}^d with regions $\mathcal{R}(\mathcal{A})$ and intersections $\mathcal{L}(\mathcal{A})$.

Theorem (Zaslavsky)

$$\#\mathcal{R}(\mathcal{A}) = \sum_{X \in \mathcal{L}(\mathcal{A})} |\mu(V, X)|$$

Example

Zaslavsky's theorem: 1 + 3(1) + 2 = 6.

Galen (RUB)

Let A_{d-1} be the arrangement with the $\binom{d}{2}$ hyperplanes

$$H_{ij} := \{ \mathbf{x} \in \mathbb{R}^d \mid x_i - x_j = 0 \}$$
 for $i < j \in [d] := \{1, \dots, d\}.$

- The regions of the Braid Arrangement A_{d−1} are in bijection with the permutations 𝔅_d of d objects.
- The poset of (nonempty) intersections is isomorphic (as a poset) to the poset of (set) partitions Π_d of [d] ordered by refinement.

Zaslavsky's theorem says

$$\#\mathfrak{S}_d = \sum_{\pi \in \Pi_d} \prod_{B \in \pi} (\#B - 1)!$$

Example: Braid Arrangement

Let A_{d-1} be the arrangement with the $\binom{d}{2}$ hyperplanes

 $H_{ij} := \{ \mathbf{x} \in \mathbb{R}^d \mid x_i - x_j = 0 \}$ for $i < j \in [d] := \{1, \dots, d\}.$

Zaslavsky's theorem says

$$\#\mathfrak{S}_d = \sum_{\pi \in \Pi_d} \prod_{B \in \pi} (\#B - 1)!$$

When d = 3, the intersection poset is isomorphic (as a poset) to

Example: Braid Arrangement

Let A_{d-1} be the arrangement with the $\binom{d}{2}$ hyperplanes

 $H_{ij} := \{ \mathbf{x} \in \mathbb{R}^d \mid x_i - x_j = 0 \}$ for $i < j \in [d] := \{1, \dots, d\}.$

Zaslavsky's theorem says

$$\#\mathfrak{S}_d = \sum_{\pi \in \Pi_d} \prod_{B \in \pi} (\#B - 1)!$$

When d = 3, the intersection poset is isomorphic (as a poset) to

Zaslavsky's theorem says that 1 + 3(1) + 2 = 6 = 3!.

Galen (RUB)

The Poincaré Polynomial

Let \mathcal{A} be an arrangement in \mathbb{R}^d with regions $\mathcal{R}(\mathcal{A})$ and intersections $\mathcal{L}(\mathcal{A})$. Define the *Poincaré polynomial* of \mathcal{A} by

$$\mathsf{Poin}(\mathcal{A},t) = \sum_{X \in \mathcal{L}(\mathcal{A})} |\mu(V,X)| t^{d-\mathsf{dim}(X)}.$$

The Poincaré polynomial of this arrangement is $Poin(A, t) = 1 + 3t + 2t^2$.

Galen (RUB)

Let A_{d-1} be the arrangement with the $\binom{d}{2}$ hyperplanes

$$H_{ij} := \{ \mathbf{x} \in \mathbb{R}^d \mid x_i - x_j = 0 \}$$
 for $i < j \in [d] := \{1, \dots, d\}.$

The Poincaré polynomial of A_{n-1} is

$$\mathsf{Poin}(A_{n-1},t) = \sum_{k \ge 1} \# \{ \sigma \in \mathfrak{S}_d \mid \sigma \text{ has } k \text{ cycles} \} t^k.$$

Oriented Matroids

Let \mathcal{A} be an arrangement in \mathbb{R}^d .

- On the right, we show an example of an arrangement A, together with a labelling of the regions by *signed sets*.
- Not shown: this labelling works for the lower-dimensional faces as well!
- These signed sets satisfy the *(co)vector axioms* and thus define an oriented matroid.

I won't formally state the (co)vector axioms in this talk, but we can go over them at the end if there is interest!

(Unoriented) Matroids

Chris and Eleanore recently discussed (unoriented) matroids.

- Every oriented matroid has an underlying unoriented matroid. Instead of looking at signed sets X = (X⁺, X[−]), look at X = X⁺ ∪ X[−].
- There is also a notion of oriented matroid duality. In our setting, the dual of the "facial oriented matroid" encodes (signed) linear dependencies among the normal vectors to the hyperplanes.

Example

Normal vectors:
$$v_1 = (1, -1), v_2 = (0, 1), \text{ and } v_3 = (1, 1).$$

- The linear dependence $v_1 + 2v_2 v_3 = (0,0)$ corresponds to the signed set + + -
- The linear dependence $-v_1 2v_2 + v_3 = (0,0)$ corresponds to the signed set - +

¹The opposite is not true, see Bland-Las Vergnas "Orientability of Matroids."

Galen (RUB)

Cones & Varchenko-Gel'fand

Useful Facts About Oriented Matroids

Consider an oriented matroid on the ground set [n].

- The signed sets associated to minimal dependencies among the normal vectors are called the *signed circuits*.
- If an oriented matroid has signed circuits C, then the unsigned circuits of the underlying unoriented matroid are <u>C</u> := {<u>C</u> | C ∈ C} We can break an unsigned circuit by removing the smallest entry of <u>C</u>.
- Any subset N ⊆ [n] NOT containing a broken circuit is a no broken circuit set of the oriented matroid.

Example

Normal vectors:
$$v_1 = (1, -1), v_2 = (0, 1), \text{ and } v_3 = (1, 1).$$

- Signed circuits: + + -, - +
- Unsigned circuit: $\{1, 2, 3\}$
- \bullet No broken circuit sets: $\emptyset,\ 1,\ 2,\ 3,\ 12,\ 13$

The Varchenko-Gel'fand Ring

Let \mathcal{A} be an arrangement of hyperplanes in \mathbb{R}^d with regions $\mathcal{R}(\mathcal{A})$.

Definition

The Varchenko-Gel'fand ring of \mathcal{A} is the set of maps $f : \mathcal{R}(\mathcal{A}) \to \mathbb{Z}$ with pointwise addition and multiplication.

Let \mathcal{A} be an arrangement of hyperplanes in \mathbb{R}^d with regions $\mathcal{R}(\mathcal{A})$.

Definition

The Varchenko-Gel'fand ring of \mathcal{A} is the set of maps $f : \mathcal{R}(\mathcal{A}) \to \mathbb{Z}$ with pointwise addition and multiplication.

Generators for the Varchenko-Gel'fand ring

Let \mathcal{A} be an arrangement of hyperplanes in \mathbb{R}^d . Choose a set of normal vectors such that n_H is the normal vector to $H \in \mathcal{A}$. Define a *Heaviside function*

$$x_{H}(v) = egin{cases} 1 & ext{if } \langle v, n_{H}
angle > 0 \ 0 & ext{else.} \end{cases}$$

We can define this instead on regions, by choosing a representative point $v \in R$ for each region and defining $x_H(R) = x_H(v)$.

Example $x_1 = \frac{0 \quad 0 \quad 1}{0 \quad 1 \quad 1}$ $x_2 = \frac{1 \quad 1 \quad 1}{0 \quad 0 \quad 0}$ $x_3 = \frac{0 \quad 1 \quad 1}{0 \quad 1 \quad 1}$

Generators for the Varchenko-Gel'fand ring

Lemma

Together with 1, these Heaviside functions generate the Varchenko-Gel'fand ring as a \mathbb{Z} -algebra.

Let's write out the following element as a polynomial in these Heaviside functions.

Generators for the Varchenko-Gel'fand ring

Lemma

Together with 1, these Heaviside functions generate the Varchenko-Gel'fand ring as a \mathbb{Z} -algebra.

Let's write out the following element as a polynomial in these Heaviside functions.

$$x_1x_3(1-x_2) = \frac{\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}}{\begin{array}{c} 0 & 0 & 1 \end{array}}$$

Definition

The Varchenko-Gel'fand ring of \mathcal{A} is the set of maps $f : \mathcal{R}(\mathcal{A}) \to \mathbb{Z}$ with pointwise addition and multiplication.

Lemma

These Heaviside functions generate the Varchenko-Gel'fand ring as a \mathbb{Z} -algebra.

Let A_{d-1} be the Braid Arrangement. Regions are in bijection with permutations of d objects, and moreover

$$x_{ij}(\sigma) = egin{cases} 1 & ext{if } \sigma(i) < \sigma(j) \ 0 & ext{else} \end{cases}$$

for i < j in [n]. Our lemma says that we can describe $\sigma \in \mathfrak{S}_d$ by its inversion set.

Galen (RUB)

A Filtration by Degree

Let \mathcal{A} be an arrangement of hyperplanes in \mathbb{R}^d .

- We just saw that the Varchenko-Gel'fand ring is generated by Heaviside functions defined by the hyperplanes of A.
- It also has a filtration $\mathcal{F}: F_0 \subseteq F_1 \subseteq \cdots$ by degree, i.e., the collection of additive groups

$$F_0 = \mathbb{Z} - \operatorname{span}\{1\}$$

$$F_1 = \mathbb{Z} - \operatorname{span}\{1\} \cup \{x_H \mid H \in \mathcal{A}\}$$

$$\vdots$$

$$F_i = \mathbb{Z} - \operatorname{span}\{\operatorname{monomials} \text{ of degree } \leq i\}$$

• The associated graded ring is $\mathcal{VG}(\mathcal{A}) = \bigoplus_{i \ge 0} F_i / F_{i-1}$ and its Hilbert series is

$$\mathsf{Hilb}(\mathcal{VG}(\mathcal{A}),t) = \sum_{i\geq 0} \mathsf{rk}_{\mathbb{Z}}(F_i/F_{i-1}) t^i.$$

Let \mathcal{A} be an arrangement of hyperplanes in \mathbb{R}^d with intersection poset $\mathcal{L}(\mathcal{A})$.

Theorem (Varchenko-Gel'fand)

Each graded component F_i/F_{i-1} of $\mathcal{VG}(\mathcal{A})$ is a free \mathbb{Z} -module with \mathbb{Z} -basis indexed by the no broken circuit sets of the arrangement.

Theorem (Rota)

For $X \in \mathcal{L}(\mathcal{A})$, we have

 $|\mu(\mathbb{R}^d, X)| = \#\{$ no broken circuit sets whose join is $X\}.$

Combining these theorems gives

$$Hilb(\mathcal{VG}(\mathcal{A}), t) = Poin(\mathcal{A}, t).$$

Example

Consider the arrangement in \mathbb{R}^2 with normal vectors $v_1 = (1, -1), v_2 = (0, 1)$, and $v_3 = (1, 1)$ (drawn below, left).

- Signed circuits: ++-, --+
- Unsigned circuit: {1,2,3}
 - No broken circuit sets: \emptyset , 1, 2, 3, 12, 13

Varchenko-Gel'fand showed that

$$\mathcal{VG}(\mathcal{A}) \cong \mathbb{Z} \cdot \{1\} \oplus \mathbb{Z} \cdot \{x_1, x_2, x_3\} \oplus \mathbb{Z} \cdot \{x_1x_2, x_1x_3\}$$

where $\mathbb{Z} \cdot \{-\}$ denotes the $\mathbb{Z}\text{-span}$ of -. Then the Hilbert series is

$$\mathsf{Hilb}(\mathcal{VG}(\mathcal{A}),t) = 1 + 3t + 2t^2$$

which matches the Poincaré polynomial we computed earlier.

Galen (RUB)

A Generalization

Instead of looking at arrangements \mathcal{A} , look at *cones*.

- A cone \mathcal{K} of an arrangement \mathcal{A} is an intersection of (open) halfspaces defined by some of the hyperplanes of \mathcal{A} .
- Cones are interesting in the theory of arrangements, as they unify the theory of *central* and *affine* arrangements while generalizing both.

Below are two examples of a cones in arrangements.

Let \mathcal{K} be a cone of an arrangement $\mathcal{A} = \{H_1, \ldots, H_n\}$.

- The regions of a cone ${\cal K}$ are the regions of the arrangement which lie inside the open cone.
- The intersections of such a cone $\mathcal{L}(\mathcal{K})$ are the intersections X of the arrangement such that $X \cap \mathcal{K} \neq \emptyset$.
- It turns out that $\mathcal{L}(\mathcal{K})$ is an *order ideal* of $\mathcal{L}(\mathcal{A})$, so that it makes sense to define

$$\mathsf{Poin}(\mathcal{K},t) = \sum_{X \in \mathcal{L}(\mathcal{K})} |\mu(\mathbb{R}^d,X)| t^{d-\mathsf{dim}(X)}.$$

Consider the shaded cone \mathcal{K} in the arrangement in \mathbb{R}^2 (drawn below).

- This cone has two chambers.
- It has intersections \mathbb{R}^2 , H_2 .
- Its Poincaré polynomial is $Poin(\mathcal{K}, t) = 1 + t$.

Cones of Arrangements

Let \mathcal{K} be a cone of an arrangement $\mathcal{A} = \{H_1, \ldots, H_n\}$ and let $NBC(\mathcal{A})$ denote the set of no broken circuit monomials of the (unoriented) matroid of \mathcal{A} .

• Say that $N \in NBC(\mathcal{A})$ is a \mathcal{K} -no-broken-circuit set if the intersection $\bigcap_{i \in N} H_i$ has a nonempty intersection with \mathcal{K} .

Example

Consider the arrangement in \mathbb{R}^2 with normal vectors $v_1 = (1, -1), v_2 = (0, 1)$, and $v_3 = (1, 1)$ (drawn below, left).

- Signed circuits: + + -, - +
- Unsigned circuit: $\{1,2,3\}$
- \bullet No broken circuit sets: $\emptyset,\ 1,\ 2,\ 3,\ 12,\ 13$
- \mathcal{K} -no-broken-circuits: \emptyset , 2

Generalized Statement of Results

Let \mathcal{K} be a cone of an arrangement \mathcal{A} in \mathbb{R}^d .

Theorem (DB)

Each graded component F_i/F_{i-1} of $\mathcal{VG}(\mathcal{K})$ is a free \mathbb{Z} -module with \mathbb{Z} -basis indexed by \mathcal{K} -no broken circuit sets of the arrangement. Moreover

 $\mathsf{Hilb}(\mathcal{VG}(\mathcal{K}),t) = \mathsf{Poin}(\mathcal{K},t).$

This theorem is a corollary to the main theorem of the paper. The main theorem defines a certain collection of polynomials \mathcal{G} and uses them to give presentations for the Varchenko-Gel'fand ring and its associated graded:

$$VG(\mathcal{K}) \cong \mathbb{Z}[e_1, \dots, e_n]/(\mathcal{G})$$
$$\mathcal{VG}(\mathcal{K}) \cong \mathbb{Z}[e_1, \dots, e_n]/(in_{deg}\mathcal{G})$$

where $in_{deg}\mathcal{G}$ denotes the top-degree form of $g\in\mathcal{G}$.

I won't state these precisely in this talk, but we can discuss them at the end, if there is interest!

Galen (RUB)

A Consequence of the Approach

Warning: This section uses several terms that I haven't defined. Some useful references:

- Section 1 of "Gröbner Bases and Convex Polytopes" by Sturmfels
- Chapter 2 of "Ideals, Varieties, and Algorithms" by Cox, Little, O'Shea

Let \mathcal{K} be a cone of an arrangement \mathcal{A} in \mathbb{R}^d . The same arguments work over a field \mathbb{F} (and in fact they're even easier!)

Corollary (DB)

Using the same collection of polynomials ${\cal G}$ as in the integer case, we have

$$VG(\mathcal{K}) \cong \mathbb{F}[e_1, \dots, e_n]/(\mathcal{G})$$
$$\mathcal{VG}(\mathcal{K}) \cong \mathbb{F}[e_1, \dots, e_n]/(in_{deg}\mathcal{G})$$

where \mathcal{G} is a Gröbner basis for (\mathcal{G}) (we assume that the given monomial order \prec satisfies $e_1 \prec \cdots \prec e_n$).

In the next few slides, we'll look at one consequence of this extension.

Quadratic Gröbner bases

Let *R* be a *commutative standard graded* \mathbb{F} -algebra, i.e. $R \cong \mathbb{F}[e_1, \ldots, e_n]/I$ where *I* is a homogeneous ideal and each e_i has degree exactly 1. Suppose

$$F_{\bullet}:\cdots \xrightarrow{\varphi_3} R^{\beta_2} \xrightarrow{\varphi_2} R^{\beta_1} \xrightarrow{\varphi_1} R \longrightarrow \mathbb{F}$$

is a *minimal free resolution* of the *R*-module $\mathbb{F} = R/R_+$ where R_+ is the maximal homogeneous ideal, consisting of all elements of positive degree.

Definition

R is *Koszul* if the nonzero entries of each φ_i matrix are homogeneous of degree 1.

Theorem

Let I be a homogeneous ideal in $\mathbb{F}[e_1, \ldots, e_n]$. Suppose there exists a monomial order \prec and quadratic Gröbner basis \mathcal{G} generating I. Then $R = \mathbb{F}[e_1, \ldots, e_n]/I$ is Koszul.

Theorem

Let I be a homogeneous ideal in $\mathbb{F}[e_1, \ldots, e_n]$. Suppose there exists a monomial order \prec and quadratic Gröbner basis \mathcal{G} generating I. Then $R = \mathbb{F}[e_1, \ldots, e_n]/I$ is Koszul.

Takeaway: If there is a family of arrangements (or cones) for which $in_{deg}(\mathcal{G})$ is quadratic, then this theorem tells us that $\mathcal{VG}(\mathcal{A})$ will be Koszul.

One such family are *supersolvable arrangements*, of which the Braid Arrangement A_{d-1} is an example.

Theorem (Björner-Ziegler)

Let A be a supersolvable arrangement and M its underlying (unoriented) matroid. Then the minimal broken circuits of M (under inclusion) have cardinality 2.

Its not immediate, but one can use this Björner-Ziegler result in conjunction with the quadtratic Gröbner basis result to show:

Theorem (DB)

If \mathcal{A} is a supersolvable arrangement, then $\mathcal{VG}(\mathcal{A})$ is Koszul.

Questions for the Audience

- (for early graduate students) Are there places in your research where a proof had implications not directly implied by the theorem you wanted to prove?
- (for everyone) The final theorem in the talk was a commutative version of a theorem of Irena Peeva (she proved the equivalent statement for the Orlik-Solomon algebra). Are there other statements from the Orlik-Solomon algebra, which have analogues for the Varchenko-Gel'fand ring?
- (for everyone) In the Braid Arrangement, cones correspond to posets on *d*. There are "poset cones" *K_P* in the Braid Arrangement for which *VG*(*K_P*) is not Koszul. Is there some interesting family of posets for which *VG*(*K_P*) is Koszul?²

²If you find one, I have a follow-up question! (But its too technical for today!)

Thank you for listening! arXiv:2104.02740v1