Galen Dorpalen-Barry joint with Joshua Maglione and Christian Stump

arXiv:2301.05904 + JLMS (2025) + FPSAC extended abstract (2024)

ESI Workshop: Recent Perspectives on Non-crossing Partitions February 16, 2025

1/26

Outline

Motivation

Igusa Zeta Functions & their Poles

- Grunewald, Sega, and Smith (1988) define "subgroup zeta function" of a finitely-generated group
- Du Sautoy and Grunewald (2000) general method to compute zeta functions
- Maglione and Voll (2023) in the case where the input polynomial is a product of linear things:
 - Calculation only depends on the intersection poset of the corresponding hyperplane arrangement
 - Result has only one pole: t = 1
 - Conjecture: multiplicity of this pole is the rank of the arrangement

4 / 26

Igusa Zeta Functions & their Poles

- Grunewald, Sega, and Smith (1988) define "subgroup zeta function" of a finitely-generated group
- Du Sautoy and Grunewald (2000) general method to compute zeta functions
- Maglione and Voll (2023) in the case where the input polynomial is a product of linear things:
 - Calculation only depends on the intersection poset of the corresponding hyperplane arrangement
 - Result has only one pole: t = 1
 - Conjecture: multiplicity of this pole is the rank of the arrangement

Goal for Today: Prove Maglione-Voll's conjecture.

Igusa Zeta Functions & their Poles

- Grunewald, Sega, and Smith (1988) define "subgroup zeta function" of a finitely-generated group
- Du Sautoy and Grunewald (2000) general method to compute zeta functions
- Maglione and Voll (2023) in the case where the input polynomial is a product of linear things:
 - Calculation only depends on the intersection poset of the corresponding hyperplane arrangement
 - Result has only one pole: t = 1
 - Conjecture: multiplicity of this pole is the rank of the arrangement

Goal for Today: Prove Maglione-Voll's conjecture.

A Key Tool: a combinatorially-defined polynomial that says something mysterious about noncrossing partitions.

Main Objects

Arrangements of Hyperplanes in \mathbb{R}^d

- A hyperplane is an affine linear subspace of codimension 1.
- A collection of finitely-many (distinct) hyperplanes is an **arrangement**.

Arrangements of Hyperplanes in \mathbb{R}^d

- A hyperplane is an affine linear subspace of codimension 1.
- A collection of finitely-many (distinct) hyperplanes is an arrangement.

Today we'll focus on **intersections** (= nonempty intersections of some of the hyperplanes).

Arrangements of Hyperplanes in \mathbb{R}^d

A hyperplane is an affine linear subspace of codimension 1.
A collection of finitely-many

(distinct) hyperplanes is an

The set of intersections of this arrangement is

 $\mathbb{R}^2, H_1, H_2, H_3, H_1 \cap H_2 \cap H_3$

Today we'll focus on **intersections** (= nonempty intersections of some of the hyperplanes).

arrangement.

Poset of Intersections

- Let \mathcal{A} be an arrangement in $V \cong \mathbb{R}^d$ with intersections $\mathcal{L}(\mathcal{A})$.
 - The elements of $\mathcal{L}(\mathcal{A})$ form a poset under reverse inclusion.
 - A theorem of Zaslavsky relates the Möbius function values of lower intervals [V, X] ⊆ L(A) to the number of regions of the arrangement.

The poset of intersections is

Poset of Intersections

- Let \mathcal{A} be an arrangement in $V \cong \mathbb{R}^d$ with intersections $\mathcal{L}(\mathcal{A})$.
 - The elements of $\mathcal{L}(\mathcal{A})$ form a poset under reverse inclusion.
 - A theorem of Zaslavsky relates the Möbius function values of lower intervals [V, X] ⊆ L(A) to the number of regions of the arrangement.

The poset of intersections is

Let \mathcal{A} be a central, essential hyperplane arrangement and \mathcal{L} its lattice of intersections.

Let \mathcal{A} be a central, essential hyperplane arrangement and \mathcal{L} its lattice of intersections.

Definition

The Poincaré polynomial of ${\mathcal L}$ is

$$\mathsf{Poin}(\mathcal{L}; y) = \sum_{x \in \mathcal{L}} |\mu(\hat{0}, x)| \ y^{\mathsf{codim}(x)},$$

where codim(x) denotes the codimension of x.

Let \mathcal{A} be a central, essential hyperplane arrangement and \mathcal{L} its lattice of intersections.

Definition

The Poincaré polynomial of ${\mathcal L}$ is

$$\mathsf{Poin}(\mathcal{L}; y) = \sum_{x \in \mathcal{L}} |\mu(\hat{0}, x)| \ y^{\mathsf{codim}(x)},$$

where codim(x) denotes the codimension of x.

Similar to the characteristic polynomial $\chi(\mathcal{A}, t) = (-1)^{\operatorname{rank}(\mathcal{A})} T_{\mathcal{A}}(1-t, 0).$

Let \mathcal{A} be a central, essential hyperplane arrangement and \mathcal{L} its lattice of intersections.

Definition

The Poincaré polynomial of \mathcal{L} is

$$\mathsf{Poin}(\mathcal{L}; y) = \sum_{x \in \mathcal{L}} |\mu(\hat{0}, x)| \ y^{\mathsf{codim}(x)},$$

where codim(x) denotes the codimension of x.

Similar to the characteristic polynomial $\chi(\mathcal{A}, t) = (-1)^{\operatorname{rank}(\mathcal{A})} T_{\mathcal{A}}(1-t, 0).$

Tells us the Hilbert series of the Orlik-Solomon Algebra and Varchenko-Gelfand ring.

Let \mathcal{A} be a central, essential hyperplane arrangement and \mathcal{L} its lattice of intersections.

Definition

The Poincaré polynomial of \mathcal{L} is

$$\mathsf{Poin}(\mathcal{L}; y) = \sum_{x \in \mathcal{L}} |\mu(\hat{0}, x)| \ y^{\mathsf{codim}(x)},$$

where codim(x) denotes the codimension of x.

Note. We can define the Poincaré polynomial for any *graded poset*.

Definition

The (Poincaré-)extended ab-index of \mathcal{L} is

$$\mathsf{ex}\Psi(\mathcal{L};y,\mathbf{a},\mathbf{b}) = \sum_{\mathcal{C}:\mathsf{chain of } \mathcal{L}\setminus\{\hat{1}\}} \mathsf{Poin}(\mathcal{L},\mathcal{C},y) \; \mathsf{wt}_{\mathcal{C}}(\mathbf{a},\mathbf{b}) \, .$$

Definition

The (Poincaré-)extended ab-index of ${\mathcal L}$ is

$$\begin{split} \mathsf{e} \mathsf{x} \Psi(\mathcal{L}; y, \mathbf{a}, \mathbf{b}) &= (\mathbf{a} - \mathbf{b})^2 + (1 + 3y + 2y^2) \mathbf{b} (\mathbf{a} - \mathbf{b}) + 3 \cdot (1 + y) (\mathbf{a} - \mathbf{b}) \mathbf{b} + 3 \cdot (1 + y)^2 \mathbf{b}^2 \\ &= \mathbf{a}^2 + (3y + 2y^2) \mathbf{b} \mathbf{a} + (2 + 3y) \mathbf{a} \mathbf{b} + y^2 \mathbf{b}^2 \end{split}$$

Definition

The (Poincaré-)extended ab-index of \mathcal{L} is

For the poset on the left:

$$\mathsf{ex}\Psi(\mathcal{L};y,\mathbf{a},\mathbf{b}) = \sum_{\mathcal{C}:\mathsf{chain of } \mathcal{L}\setminus\{\hat{1}\}} \mathsf{Poin}(\mathcal{L},\mathcal{C},y) \; \mathsf{wt}_{\mathcal{C}}(\mathbf{a},\mathbf{b}) \, .$$

$$ex\Psi(P; y, \mathbf{a}, \mathbf{b}) = \mathbf{a}^3 + (3y+2)\mathbf{a}^2\mathbf{b} + (3y^2+6y+2)\mathbf{a}\mathbf{b}\mathbf{a}$$

+ $(3y^2+3y+1)\mathbf{a}\mathbf{b}^2 + (y^3+3y^2+3y)\mathbf{b}\mathbf{a}^2$
+ $(2y^3+6y^2+3y)\mathbf{b}\mathbf{a}\mathbf{b} + (2y^3+3y^2)\mathbf{b}^2\mathbf{a}$
+ $y^3\mathbf{b}^3$.

Let P be a graded poset.

Definition

The (Poincaré-)extended ab-index of \mathcal{L} is

$$\mathsf{ex}\Psi(\mathcal{L};y,\mathbf{a},\mathbf{b}) = \sum_{\mathcal{C}:\mathsf{chain of }\mathcal{L}\setminus\{\hat{1}\}}\mathsf{Poin}(\mathcal{L},\mathcal{C},y)\;\mathsf{wt}_{\mathcal{C}}(\mathbf{a},\mathbf{b})\,.$$

Conjecture (Maglione-Voll)

If *P* is the *intersection poset* of an arrangement of hyperplanes, then (a harmless modification of) $ex\Psi(\mathcal{L}; y, 1, t)$ has nonnegative coefficients.

Their conjecture is true, even for $ex\Psi(\mathcal{L}; y, \mathbf{a}, \mathbf{b})$, and holds for an even bigger class of posets!

Let P be a graded poset.

Definition

The (Poincaré-)extended ab-index of \mathcal{L} is

$$\mathsf{ex}\Psi(\mathcal{L};y,\mathbf{a},\mathbf{b}) = \sum_{\mathcal{C}:\mathsf{chain of }\mathcal{L}\setminus\{\hat{1}\}}\mathsf{Poin}(\mathcal{L},\mathcal{C},y)\;\mathsf{wt}_{\mathcal{C}}(\mathbf{a},\mathbf{b})\,.$$

Conjecture (Maglione-Voll)

If *P* is the *intersection poset* of an arrangement of hyperplanes, then (a harmless modification of) $ex\Psi(\mathcal{L}; y, 1, t)$ has nonnegative coefficients.

Their conjecture is true, even for $ex\Psi(\mathcal{L}; y, \mathbf{a}, \mathbf{b})$, and holds for an even bigger class of posets! Before we get into the proof, let's look at where their conjecture comes from...

Let \mathcal{A} be a central hyperplane arrangement in a real vector space with intersection lattice \mathcal{L} .

Maglione–Voll prove that (after a change of variables) the (coarse) analytic zeta function of A is

$$Z_{\mathcal{A}}(y,t) = \sum_{\mathcal{C}: \mathsf{chain of} \mathcal{L} \setminus \{\hat{0}, \hat{1}\}} \mathsf{Poin}(\mathcal{C} \cup \{\hat{0}\}, y) \left(rac{t}{1-t}
ight)^{\#\mathcal{C}}.$$

Let ${\mathcal A}$ be a central hyperplane arrangement in a real vector space with intersection lattice ${\mathcal L}.$

Maglione–Voll prove that (after a change of variables) the (coarse) analytic zeta function of ${\cal A}$ is

$$Z_{\mathcal{A}}(y,t) = \sum_{\mathcal{C}: \mathsf{chain of } \mathcal{L} \setminus \{\hat{0}, \hat{1}\}} \mathsf{Poin}(\mathcal{C} \cup \{\hat{0}\}, y) \left(\frac{t}{1-t}\right)^{\#\mathcal{C}}$$

This is a bivariate version of the analytic zeta function.

A different bivariate specialization of their analytic zeta function recovers the celebrated **Motivic Zeta function** of a matroid given by Jensen–Kutler–Usatine.

Let ${\mathcal A}$ be a central hyperplane arrangement in a real vector space with intersection lattice ${\mathcal L}.$

Maglione–Voll prove that (after a change of variables) the (coarse) analytic zeta function of A is

$$Z_{\mathcal{A}}(y,t) = \sum_{\mathcal{C}: \mathsf{chain of } \mathcal{L} \setminus \{\hat{0}, \hat{1}\}} \mathsf{Poin}(\mathcal{C} \cup \{\hat{0}\}, y) \left(rac{t}{1-t}
ight)^{\# \mathcal{C}}.$$

Putting all terms over the same denominator gives

$$Z_{\mathcal{A}}(y,t) = \sum_{\mathcal{C}: \mathsf{chain of } \mathcal{L} \setminus \{\hat{0}, \hat{1}\}} rac{\mathsf{Poin}(\mathcal{C} \cup \{\hat{0}\}, y) t^{\#\mathcal{C}} (1-t)^{\mathsf{rank}(\mathcal{A}) - \#\mathcal{C}}}{(1-t)^{\mathsf{rank}(\mathcal{A})}}.$$

The numerator of this rational function is

$$\mathit{Num}_{\mathcal{A}}(y,t) = \sum_{\mathcal{C}: \mathsf{chain of} \mathcal{L} \setminus \{\hat{0}, \hat{1}\}} \mathsf{Poin}(\mathcal{C} \cup \{\hat{0}\}, y) t^{\#\mathcal{C}} (1-t)^{\mathsf{rank}(\mathcal{A}) - \#\mathcal{C}}.$$

The numerator of this rational function is

$$\mathit{Num}_\mathcal{A}(y,t) = \sum_{\mathcal{C}: \mathsf{chain of}\mathcal{L} \setminus \{\hat{0},\hat{1}\}} \mathsf{Poin}(\mathcal{C} \cup \{\hat{0}\}, y) t^{\#\mathcal{C}} (1-t)^{\mathsf{rank}(\mathcal{A}) - \#\mathcal{C}}.$$

We can now state Maglione-Voll's conjecture more precisely:

Conjecture (Maglione-Voll)

 $Num_{\mathcal{A}}(y, t)$ has nonnegative coefficients.

The numerator of this rational function is

$$\mathit{Num}_{\mathcal{A}}(y,t) = \sum_{\mathcal{C}: \mathsf{chain of} \mathcal{L} \setminus \{\hat{0}, \hat{1}\}} \mathsf{Poin}(\mathcal{C} \cup \{\hat{0}\}, y) t^{\#\mathcal{C}} (1-t)^{\mathsf{rank}(\mathcal{A}) - \#\mathcal{C}}.$$

We can now state Maglione-Voll's conjecture more precisely:

Conjecture (Maglione-Voll)

 $Num_{\mathcal{A}}(y, t)$ has nonnegative coefficients.

Kühne–Maglione studied $Num_{\mathcal{A}}(1, t)$ as well, and conjectured that

$$\mathsf{Poin}(\mathcal{A},1) \cdot (1+t)^{\mathsf{rank}\mathcal{A}-1} \leq \mathsf{Num}_{\mathcal{A}}(1,t).$$

We won't discuss it today, but our proof of the Maglione-Voll conjecture will give a proof of Kühne–Maglione's conjecture (almost) for free!

18 / 26

Results

Graded Posets

Let *P* be a poset with $\hat{0}$ and $\hat{1}$.

- A **chain** is a subset of the ground set which is totally ordered with respect to *P*.
- A chain C = C₁ < C₂ < · · · C_n is maximal if C_i covers C_{i+1} for all i = 1, . . . , n − 1.
- *P* is **graded** if every maximal chain from $\hat{0}$ to $\hat{1}$ has the same length.
- For $x, y \in P$, the **interval** between x and y is

$$[x,y] = \{z \mid x \le z \le y\}.$$

R-labelings

Let P be a graded poset, and let $\mathcal{E}(P) = \{(x, y) \mid x, y \in P, x \leq y\}$ denote the set of cover relations of P.

A labeling $\lambda : \mathcal{E}(P) \to \mathbb{Z}$ is an *R*-labeling if for every interval [x, y], there is a unique maximal chain $\mathcal{M} = \{x = C_0 < C_1 < \cdots < C_{k-1} < C_k = y\}$ such that the labels *weakly* increase, i.e.,

R-labelings

Theorem (Björner, 1980)

Upper-semimodular, lower-semimodular, and supersolvable arrangements admit R-labelings.

Upshot: Geometric lattices always have *R*-labelings.

Surprise Bonus Upshot: The noncrossing partition lattices have *R*-labelings.

Let P be a graded poset of rank n with an R-labeling λ .

Theorem ((DB)MS, 2025)

The extended **ab**-index of P is

$$ex\Psi(P; y, \mathbf{a}, \mathbf{b}) = \sum_{(\mathcal{M}, E)} y^{\#E} mon(\mathcal{M}, E)$$

where the sum ranges over all pairs (\mathcal{M}, E) where \mathcal{M} is a maximal chain and E is a subset of its edges.

Let P be a graded poset of rank n with an R-labeling λ .

Theorem ((DB)MS, 2025)

The extended **ab**-index of P is

$$ex\Psi(P; y, \mathbf{a}, \mathbf{b}) = \sum_{(\mathcal{M}, E)} y^{\#E} mon(\mathcal{M}, E)$$

where the sum ranges over all pairs (\mathcal{M}, E) where \mathcal{M} is a maximal chain and E is a subset of its edges.

This immediately implies a Maglione–Voll's conjecture.

Surprise Bonus Upshot: This polynomial is nonnegative for noncrossing partition lattices.

Example

Computing $ex\Psi(\mathcal{L}; y, \mathbf{a}, \mathbf{b})$ using the theorem instead of the definition.

$\begin{array}{c c} & \hat{1} \\ & & 1 \\ \alpha_{1} & \alpha_{2} & \alpha_{3} \\ & & 1 \\ & & 2 \\ \end{array}$	E	<i>y</i> ^{#E}	$\hat{0} \lessdot \alpha_1 \lessdot \hat{1}$	$\hat{0} \lessdot \alpha_2 \lessdot \hat{1}$	$\hat{0} \lessdot \alpha_{3} \lessdot \hat{1}$
	$\{ \} \\ \{1\} \\ \{2\} \end{cases}$	1 y y	aa ba ab	ab ba ab	ab ba ab
Ô	$\{1, 2\}$	<i>y</i> ²	bb	ba	ba

 $ex\Psi(\mathcal{L}; y, \mathbf{a}, \mathbf{b}) = \mathbf{a}\mathbf{a} + (3y + 2y^2)\mathbf{b}\mathbf{a} + (2 + 3y)\mathbf{a}\mathbf{b} + y^2\mathbf{b}\mathbf{b}$

Example

Computing $ex\Psi(\mathcal{L}; y, \mathbf{a}, \mathbf{b})$ using the theorem instead of the definition.

2Î	E	<i>y</i> ^{#E}	$\hat{0} \lessdot \alpha_1 \lessdot \hat{1}$	$\hat{0} \lessdot \alpha_2 \lessdot \hat{1}$	$\hat{0} \lessdot \alpha_{3} \lessdot \hat{1}$
$\begin{array}{c c} 2 & 1 \\ \alpha_1 & \alpha_2 & \alpha_3 \\ 1 & 2 \\ \end{array}$	$\{\}$ $\{1\}$ $\{2\}$	1 y v	aa ba ab	ab ba ab	ab ba ab
Ô	$\{1,2\}$	y^2	bb	ba	ba

 $ex\Psi(\mathcal{L}; y, \mathbf{a}, \mathbf{b}) = \mathbf{a}\mathbf{a} + (3y + 2y^2)\mathbf{b}\mathbf{a} + (2 + 3y)\mathbf{a}\mathbf{b} + y^2\mathbf{b}\mathbf{b}$

Open Question: What do the coefficients of these polynomials tell us about noncrossing partitions?

Danke!

Selected References

 Louis J. Billera, Richard Ehrenborg, and Margaret Readdy. The c-2d-index of oriented matroids.
 J. Combin. Theory Ser. A, 80(1):79–105, 1997.

Lukas Kühne and Joshua Maglione. On the geometry of flag Hilbert-Poincaré series for matroids. *Algebraic Combinatorics (to appear)*, 2023.

Joshua Maglione and Christopher Voll. Flag Hilbert–Poincaré series of hyperplane arrangements and Igusa zeta functions.

Israel Journal of Mathematics (to appear), 2023.