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Igusa Zeta Functions & their Poles

Grunewald, Sega, and Smith (1988) - define “subgroup zeta function”
of a finitely-generated group

Du Sautoy and Grunewald (2000) - general method to compute zeta
functions

Maglione and Voll (2023) - in the case where the input polynomial is
a product of linear things:

▶ Calculation only depends on the intersection poset of the
corresponding hyperplane arrangement

▶ Result has only one pole: t = 1
▶ Conjecture: multiplicity of this pole is the rank of the arrangement

Goal for Today: Prove Maglione–Voll’s conjecture.
A Key Tool: a combinatorially-defined polynomial that says something
mysterious about noncrossing partitions.
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Main Objects
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Arrangements of Hyperplanes in Rd

A hyperplane is an affine linear
subspace of codimension 1.

A collection of finitely-many
(distinct) hyperplanes is an
arrangement.

The following arrangement has 6
regions and the set of intersections is

R2, H1,H2,H3,H1 ∩ H2 ∩ H3

H1

H3

H2
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Poset of Intersections

Let A be an arrangement in V ∼= Rd

with intersections L(A).

The elements of L(A) form a
poset under reverse inclusion.

A theorem of Zaslavsky relates
the Möbius function values of
lower intervals [V ,X ] ⊆ L(A)
to the number of regions of the
arrangement.

H1

H3

H2

The poset of intersections is

R2

H1 H2 H3

H1 ∩ H2 ∩ H3

+1

−1 −1 −1

+2
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The Poincaré Polynomial of a Poset

Let A be a central, essential hyperplane
arrangement and L its lattice of intersections.

Definition

The Poincaré polynomial of L is

Poin(L; y) =
∑
x∈L

|µ(0̂, x)| y codim(x),

where codim(x) denotes the codimension of x .

Similar to the characteristic polynomial
χ(A, t) = (−1)rank(A)TA(1− t, 0).

Tells us the Hilbert series of the Orlik-Solomon
Algebra and Varchenko-Gelfand ring.

1 + 3y + 3y2 + y3

1 + 3y + 2y2
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The Poincaré Polynomial of a Poset

Let A be a central, essential hyperplane
arrangement and L its lattice of intersections.

Definition

The Poincaré polynomial of L is

Poin(L; y) =
∑
x∈L

|µ(0̂, x)| y codim(x),

where codim(x) denotes the codimension of x .

Note. We can define the Poincaré polynomial for
any graded poset.

1 + 3y + 3y2 + y3

1 + 3y + 2y2
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The Poincaré-extended ab-index

Definition

The (Poincaré-)extended ab-index of L is

exΨ(L; y , a,b) =
∑

C:chain of L\{1̂}

Poin(L, C, y) wtC(a,b) .

1̂

α1 α2 α3

0̂

C Poin(L, C; y) rank(C) wtC(a,b)

{} 1 {} (a− b)2

{0̂} 1 + 3y + 2y2 {0} b(a− b)
{αi} 1 + y {1} (a− b)b

{0̂ < αi} (1 + y)2 {0, 1} b2

exΨ(L; y, a, b) = (a − b)2+(1 + 3y + 2y2)b(a − b) + 3 · (1 + y)(a − b)b+3 · (1 + y)2b2

= a2 + (3y + 2y2)ba + (2 + 3y)ab + y2b2
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The Poincaré-extended ab-index

Definition

The (Poincaré-)extended ab-index of L is

exΨ(L; y , a,b) =
∑

C:chain of L\{1̂}

Poin(L, C, y) wtC(a,b) .

For the poset on the left:

exΨ(P; y , a,b) = a3 + (3y + 2)a2b+ (3y2 + 6y + 2)aba

+ (3y2 + 3y + 1)ab2 + (y3 + 3y2 + 3y)ba2

+ (2y3 + 6y2 + 3y)bab+ (2y3 + 3y2)b2a

+ y3b3 .
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The Poincaré-extended ab-index

Let P be a graded poset.

Definition

The (Poincaré-)extended ab-index of L is

exΨ(L; y , a,b) =
∑

C:chain of L\{1̂}

Poin(L, C, y) wtC(a,b) .

Conjecture (Maglione-Voll)

If P is the intersection poset of an arrangement of hyperplanes, then (a
harmless modification of) exΨ(L; y , 1, t) has nonnegative coefficients.

Their conjecture is true, even for exΨ(L; y , a,b), and holds for an even
bigger class of posets!

Before we get into the proof, let’s look at where
their conjecture comes from...
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Motivation: Analytic Zeta Functions

Let A be a central hyperplane arrangement in a real vector space with
intersection lattice L.

Maglione–Voll prove that (after a change of variables) the (coarse)
analytic zeta function of A is

ZA(y , t) =
∑

C:chain ofL\{0̂,1̂}

Poin(C ∪ {0̂}, y)
(

t

1− t

)#C
.

This is a bivariate version of the analytic zeta function.

A different bivariate specialization of their analytic zeta function recovers
the celebrated Motivic Zeta function of a matroid given by
Jensen–Kutler–Usatine.
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Motivation: Analytic Zeta Functions
Let A be a central hyperplane arrangement in a real vector space with
intersection lattice L.

Maglione–Voll prove that (after a change of variables) the (coarse)
analytic zeta function of A is

ZA(y , t) =
∑

C:chain ofL\{0̂,1̂}

Poin(C ∪ {0̂}, y)
(

t

1− t

)#C
.

Putting all terms over the same denominator gives

ZA(y , t) =
∑

C:chain ofL\{0̂,1̂}

Poin(C ∪ {0̂}, y)t#C(1− t)rank(A)−#C

(1− t)rank(A)
.

The numerator of this rational function is

NumA(y , t) =
∑

C:chain ofL\{0̂,1̂}

Poin(C ∪ {0̂}, y)t#C(1− t)rank(A)−#C .
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Motivation: Analytic Zeta Functions

The numerator of this rational function is

NumA(y , t) =
∑

C:chain ofL\{0̂,1̂}

Poin(C ∪ {0̂}, y)t#C(1− t)rank(A)−#C .

We can now state Maglione–Voll’s conjecture more precisely:

Conjecture (Maglione-Voll)

NumA(y , t) has nonnegative coefficients.

Kühne–Maglione studied NumA(1, t) as well, and conjectured that

Poin(A, 1) · (1 + t)rankA−1 ≤ NumA(1, t).

We won’t discuss it today, but our proof of the Maglione-Voll conjecture
will give a proof of Kühne–Maglione’s conjecture (almost) for free!
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Results
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Graded Posets

Let P be a poset with 0̂ and 1̂.

A chain is a subset of the ground set which is
totally ordered with respect to P.

A chain C = C1 < C2 < · · ·Cn is maximal if Ci

covers Ci+1 for all i = 1, . . . , n − 1.

P is graded if every maximal chain from 0̂ to 1̂
has the same length.

For x , y ∈ P, the interval between x and y is

[x , y ] = {z | x ≤ z ≤ y}.
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R-labelings

Let P be a graded poset, and let E(P) = {(x , y) | x , y ∈ P, x ⋖ y} denote
the set of cover relations of P.

A labeling λ : E(P) → Z is an R-labeling if for every interval [x , y ], there
is a unique maximal chain M = {x = C0 ⋖ C1 ⋖ · · ·⋖ Ck−1 ⋖ Ck = y}
such that the labels weakly increase, i.e.,

λ(Ci−1,Ci ) ≤ λ(Ci ,Ci+1) for i = 2, . . . k − 1.

1 2 3

2

13

31

2

3 2 1

1 2 3

2 1 1
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R-labelings

Theorem (Björner, 1980)

Upper-semimodular, lower-semimodular, and supersolvable arrangements
admit R-labelings.

Upshot: Geometric lattices always have R-labelings.

Surprise Bonus Upshot: The noncrossing partition lattices have
R-labelings.
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The Poincaré-extended ab-index

Let P be a graded poset of rank n with an R-labeling λ.

Theorem ((DB)MS, 2025)

The extended ab-index of P is

exΨ(P; y , a,b) =
∑

(M,E)

y#Emon(M,E )

where the sum ranges over all pairs (M,E ) where M is a maximal chain
and E is a subset of its edges.

This immediately implies a Maglione–Voll’s conjecture.

Surprise Bonus Upshot: This polynomial is nonnegative for noncrossing
partition lattices.
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Example

Computing exΨ(L; y , a,b) using the theorem instead of the definition.

1̂

α1 α2 α3

0̂

1 2 3

2 1 1

E y#E 0̂⋖ α1 ⋖ 1̂ 0̂⋖ α2 ⋖ 1̂ 0̂⋖ α3 ⋖ 1̂

{} 1 aa ab ab
{1} y ba ba ba
{2} y ab ab ab
{1, 2} y2 bb ba ba

exΨ(L; y , a,b) = aa+ (3y + 2y2)ba+ (2 + 3y)ab+ y2bb

Open Question: What do the coefficients of these polynomials tell us
about noncrossing partitions?

Galen Dorpalen-Barry (Texas A&M) extended ab-index February 16, 2025 24 / 26



Example

Computing exΨ(L; y , a,b) using the theorem instead of the definition.

1̂

α1 α2 α3

0̂

1 2 3

2 1 1

E y#E 0̂⋖ α1 ⋖ 1̂ 0̂⋖ α2 ⋖ 1̂ 0̂⋖ α3 ⋖ 1̂

{} 1 aa ab ab
{1} y ba ba ba
{2} y ab ab ab
{1, 2} y2 bb ba ba

exΨ(L; y , a,b) = aa+ (3y + 2y2)ba+ (2 + 3y)ab+ y2bb

Open Question: What do the coefficients of these polynomials tell us
about noncrossing partitions?

Galen Dorpalen-Barry (Texas A&M) extended ab-index February 16, 2025 24 / 26



Danke!
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