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Motivation 1: Counting Poles

Zeta functions are used in group theory and can be used to capture
discrete information about groups.

There are many kinds of zeta functions, one is an Igusa local zeta
functions.

Maglione–Voll were studying Igusa local zeta functions defined by
products of linear polynomials, and proved that these zeta functions
have a simple combinatorial form.

They were interested in counting the poles of a specialization of this
function and their combinatorial form showed that the only pole was
t = 1.

They conjectured that the multiplicity of the pole was the rank of the
associated hyperplane arrangement.

Several people tried to prove their conjecture, and ended up making
related conjectures.

We proved the first conjecture and a related one.

Galen Dorpalen-Barry (Oregon) extended ab-index April 10, 2024 4 / 45



Motivation 1: Counting Poles

Zeta functions are used in group theory and can be used to capture
discrete information about groups.

There are many kinds of zeta functions, one is an Igusa local zeta
functions.

Maglione–Voll were studying Igusa local zeta functions defined by
products of linear polynomials, and proved that these zeta functions
have a simple combinatorial form.

They were interested in counting the poles of a specialization of this
function and their combinatorial form showed that the only pole was
t = 1.

They conjectured that the multiplicity of the pole was the rank of the
associated hyperplane arrangement.

Several people tried to prove their conjecture, and ended up making
related conjectures.

We proved the first conjecture and a related one.

Galen Dorpalen-Barry (Oregon) extended ab-index April 10, 2024 4 / 45



Motivation 1: Counting Poles

Zeta functions are used in group theory and can be used to capture
discrete information about groups.

There are many kinds of zeta functions, one is an Igusa local zeta
functions.

Maglione–Voll were studying Igusa local zeta functions defined by
products of linear polynomials, and proved that these zeta functions
have a simple combinatorial form.

They were interested in counting the poles of a specialization of this
function and their combinatorial form showed that the only pole was
t = 1.

They conjectured that the multiplicity of the pole was the rank of the
associated hyperplane arrangement.

Several people tried to prove their conjecture, and ended up making
related conjectures.

We proved the first conjecture and a related one.

Galen Dorpalen-Barry (Oregon) extended ab-index April 10, 2024 4 / 45



Motivation 1: Counting Poles

Zeta functions are used in group theory and can be used to capture
discrete information about groups.

There are many kinds of zeta functions, one is an Igusa local zeta
functions.

Maglione–Voll were studying Igusa local zeta functions defined by
products of linear polynomials, and proved that these zeta functions
have a simple combinatorial form.

They were interested in counting the poles of a specialization of this
function and their combinatorial form showed that the only pole was
t = 1.

They conjectured that the multiplicity of the pole was the rank of the
associated hyperplane arrangement.

Several people tried to prove their conjecture, and ended up making
related conjectures.

We proved the first conjecture and a related one.

Galen Dorpalen-Barry (Oregon) extended ab-index April 10, 2024 4 / 45



Motivation 1: Counting Poles

Zeta functions are used in group theory and can be used to capture
discrete information about groups.

There are many kinds of zeta functions, one is an Igusa local zeta
functions.

Maglione–Voll were studying Igusa local zeta functions defined by
products of linear polynomials, and proved that these zeta functions
have a simple combinatorial form.

They were interested in counting the poles of a specialization of this
function and their combinatorial form showed that the only pole was
t = 1.

They conjectured that the multiplicity of the pole was the rank of the
associated hyperplane arrangement.

Several people tried to prove their conjecture, and ended up making
related conjectures.

We proved the first conjecture and a related one.

Galen Dorpalen-Barry (Oregon) extended ab-index April 10, 2024 4 / 45



Motivation 1: Counting Poles

Zeta functions are used in group theory and can be used to capture
discrete information about groups.

There are many kinds of zeta functions, one is an Igusa local zeta
functions.

Maglione–Voll were studying Igusa local zeta functions defined by
products of linear polynomials, and proved that these zeta functions
have a simple combinatorial form.

They were interested in counting the poles of a specialization of this
function and their combinatorial form showed that the only pole was
t = 1.

They conjectured that the multiplicity of the pole was the rank of the
associated hyperplane arrangement.

Several people tried to prove their conjecture, and ended up making
related conjectures.

We proved the first conjecture and a related one.

Galen Dorpalen-Barry (Oregon) extended ab-index April 10, 2024 4 / 45



Motivation 1: Counting Poles

Zeta functions are used in group theory and can be used to capture
discrete information about groups.

There are many kinds of zeta functions, one is an Igusa local zeta
functions.

Maglione–Voll were studying Igusa local zeta functions defined by
products of linear polynomials, and proved that these zeta functions
have a simple combinatorial form.

They were interested in counting the poles of a specialization of this
function and their combinatorial form showed that the only pole was
t = 1.

They conjectured that the multiplicity of the pole was the rank of the
associated hyperplane arrangement.

Several people tried to prove their conjecture, and ended up making
related conjectures.

We proved the first conjecture and a related one.

Galen Dorpalen-Barry (Oregon) extended ab-index April 10, 2024 4 / 45



Arrangements of Hyperplanes in Rd

A hyperplane is an affine linear
subspace of codimension 1.

A collection of finitely-many
(distinct) hyperplanes is an
arrangement.

The following arrangement has 6
regions and the set of intersections is

R2, H1,H2,H3,H1 ∩ H2 ∩ H3

H1

H3

H2
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Poset of Intersections

Let A be an arrangement in V ∼= Rd

with intersections L(A).

The elements of L(A) form a
poset under reverse inclusion.

A theorem of Zaslavsky relates
the Möbius function values of
lower intervals [V ,X ] ⊆ L(A)
to the number of regions of the
arrangement.

H1

H3

H2

The poset of intersections is

R2

H1 H2 H3

H1 ∩ H2 ∩ H3

+1

−1 −1 −1

+2
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The Poincaré Polynomial of a Poset

Let A be a central, essential hyperplane
arrangement and L its lattice of intersections.

Definition

The Poincaré polynomial of L is

Poin(L; y) =
∑
x∈L

|µ(0̂, x)| y codim(x),

where codim(x) denotes the codimension of x .

Similar to the characteristic polynomial
χ(A, t) = (−1)rank(A)TA(1− t, 0).

Tells us the Hilbert series’ of the Orlik-Solomon and
Cordovil algebras.

1 + 3y + 3y2 + y3

1 + 3y + 2y2
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Let A be a central, essential hyperplane
arrangement and L its lattice of intersections.

Definition

The Poincaré polynomial of L is

Poin(L; y) =
∑
x∈L

|µ(0̂, x)| y codim(x),

where codim(x) denotes the codimension of x .

Note. We can define the Poincaré polynomial for
any graded poset.
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Chain Poincaré Polynomials

A: central, essential hyperplane arrangement
L: lattice of intersections of A
C = {C1 < · · · < Ck}: chain of L

The chain Poincaré polynomial of C is

Poin(L, C; y) =
k∏

i=1

Poin([Ci ,Ci+1], y) where Ck+1 = 1̂.

Poin(P, C; y) = (1 + y)2

y = 1 recovers the Bayer-Sturmfels relation: size of a

fiber of a chain under the surjection z : Σ∗(A) → L.
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The Weight of a Chain

A: central, essential hyperplane arrangement
L: lattice of intersections of A
C = {C1 < · · · < Ck}: chain of L

If P is rank n (every maximal chain from 0̂ to 1̂ has length n+ 1) then the
weight of a chain C is wt(C) = w1 . . .wn ∈ Z⟨a,b⟩ where

wi =

{
b if ∃Cj ∈ C such that rank(Cj) = i − 1

a− b else .

wt(C) = (a− b)bb
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The Poincaré-extended ab-index

Definition

The (Poincaré-)extended ab-index of L is

exΨ(L; y , a,b) =
∑

C:chain of L\{1̂}

Poin(L, C, y) wtC(a,b) .

1̂

α1 α2 α3

0̂

C Poin(L, C; y) rank(C) wtC(a,b)

{} 1 {} (a− b)2

{0̂} 1 + 3y + 2y2 {0} b(a− b)
{αi} 1 + y {1} (a− b)b

{0̂ < αi} (1 + y)2 {0, 1} b2

exΨ(L; y, a, b) = (a − b)2+(1 + 3y + 2y2)b(a − b) + 3 · (1 + y)(a − b)b+3 · (1 + y)2b2

= a2 + (3y + 2y2)ba + (2 + 3y)ab + y2b2
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The Poincaré-extended ab-index

Definition

The (Poincaré-)extended ab-index of L is

exΨ(L; y , a,b) =
∑

C:chain of L\{1̂}

Poin(L, C, y) wtC(a,b) .

For the poset on the left:

exΨ(P; y , a,b) = a3 + (3y + 2)a2b+ (3y2 + 6y + 2)aba

+ (3y2 + 3y + 1)ab2 + (y3 + 3y2 + 3y)ba2

+ (2y3 + 6y2 + 3y)bab+ (2y3 + 3y2)b2a

+ y3b3 .

Galen Dorpalen-Barry (Oregon) extended ab-index April 10, 2024 17 / 45



The Poincaré-extended ab-index

Let P be a graded poset.

Definition

The (Poincaré-)extended ab-index of L is

exΨ(L; y , a,b) =
∑

C:chain of L\{1̂}

Poin(L, C, y) wtC(a,b) .

Conjecture (Maglione-Voll)

If P is the intersection poset of an arrangement of hyperplanes, then
exΨ(L; y , 1, t) has nonnegative coefficients.

This conjecture is true, even for exΨ(L; y , a,b), and holds for an even
bigger class of posets!

Let’s revisit where this conjecture comes from...
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Motivation 2: Counting the Multiplicity of Poles

A: central hyperplane arrangement in V ∼= Rd

L: intersection lattice of A

Maglione–Voll prove that the (coarse) analytic zeta function of A has
the following combinatorial description:

ZA(y , t) =
∑

C:chain ofL\{0̂,1̂}

Poin(C ∪ {0̂}, y)
(

t

1− t

)#C
.

This is a bivariate version of the analytic zeta function.

A different bivariate specialization of their analytic zeta function recovers
the celebrated Motivic Zeta function of a matroid given by
Jensen–Kutler–Usatine.
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Motivation 2: Counting the Multiplicity of Poles

The numerator of this rational function is

NumA(y , t) =
∑

C:chain ofL\{0̂,1̂}

Poin(C ∪ {0̂}, y)t#C(1− t)rank(A)−#C .

Conjecture (Maglione-Voll)

NumA(y , t) has nonnegative coefficients.

⇒ t = 1 is not a root of NumA(y , t)

⇒ Multiplicity of the pole t = 1 in the rational expression is rank(A)
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Motivation 2: Counting the Multiplicity of Poles

The numerator of this rational function is

NumA(y , t) =
∑

C:chain ofL\{0̂,1̂}

Poin(C ∪ {0̂}, y)t#C(1− t)rank(A)−#C .

Conjecture (Maglione-Voll)

NumA(y , t) has nonnegative coefficients.

Kühne–Maglione studied NumA(1, t) as well, and conjectured that

Poin(A, 1) · (1 + t)rankA−1 ≤ NumA(1, t).

We won’t discuss it today, but our proof of the Maglione-Voll conjecture
will give a proof of Kühne–Maglione’s conjecture (almost) for free!
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Combinatorial Machinery:
R-labeled Posets + Generalized Descent Sets
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Graded Posets

Let P be a poset with 0̂ and 1̂.

A chain C = C1 < C2 < · · ·Cn is maximal if Ci

covers Ci+1 for all i = 1, . . . , n − 1.

P is graded if every maximal chain from 0̂ to 1̂
has the same length.

For x , y ∈ P, the interval between x and y is

[x , y ] = {z | x ≤ z ≤ y}.
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R-labelings

Let P be a graded poset, and let E(P) = {(x , y) | x , y ∈ P, x ⋖ y} denote
the set of cover relations of P.

A labeling λ : E(P) → Z is an R-labeling if for every interval [x , y ], there
is a unique maximal chain M = {x = C0 ⋖ C1 ⋖ · · ·⋖ Ck−1 ⋖ Ck = y}
such that the labels weakly increase, i.e.,

λ(Ci−1,Ci ) ≤ λ(Ci ,Ci+1) for i = 2, . . . k − 1.

1 2 3

2

13

31

2

3 2 1

1 2 3

2 1 1
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Descent Sets

Let P be a graded poset of rank n, with a fixed R-labeling λ.

Let M = {0̂ = C0 ⋖ C1 ⋖ · · ·⋖ Ck−1 ⋖ Ck = 1̂} be a maximal chain of P.
For i ∈ {1, . . . , n − 1}, M has a descent at index i if

λ(Ci−1,Ci ) > λ(Ci ,Ci+1) .

1 2 3

2

13

31

2

3 2 1

This chain has a descent at position 1.
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Descent Sets

Let P be a graded poset of rank n, with a fixed R-labeling λ.

Let M = {0̂ = C0 ⋖ C1 ⋖ · · ·⋖ Ck−1 ⋖ Ck = 1̂} be a maximal chain of P.
For i ∈ {1, . . . , n − 1}, M has a descent at index i if

λ(Ci−1,Ci ) > λ(Ci ,Ci+1) .

1 2 3

2

13

31

2

3 2 1

This chain has descents at positions 1 and 2.
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Generalized Descent Sets

Let P be a graded poset of rank n, with a fixed R-labeling λ,

M = {0̂ = C0 ⋖ C1 ⋖ · · ·⋖ Ck−1 ⋖ Ck = 1̂} a maximal chain,

E a subset of the edges of M
For i ∈ {0, . . . , n − 1}, (M,E ) has a descent at index i if we have one of
the following situations

+ −

where + means λ is increasing and − means that λ is decreasing.
Now we include i = 0, which is a descent if and only if the edge above
M0 is in E !
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Generalized Descent Sets (Example)

A maximal chain M in an R-labeled poset, together with the descent sets
for the (M,E ) pairs with E = ∅, {1}, {2, 3}.

1 2 3

2

13

31

2

3 2 1
∅

−

+

{1}

{1}

−

+

{0}

{2, 3}

−

+

{1, 2}
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Generalized Descent Sets

Let P be a graded poset of rank n, with a fixed R-labeling λ,

M = {0̂ = C0 ⋖ C1 ⋖ · · ·⋖ Ck−1 ⋖ Ck = 1̂} a maximal chain,

E a subset of the edges of M
Then mon(M,E ) = m1 . . .mn is the monomial in noncommuting variables
a and b with

mi =

{
b if i is a descent of (M,E )

a else .
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Generalized Descent Sets (Example)

A maximal chain M in an R-labeled poset, together with the descent sets
and monomials for the (M,E ) pairs with E = ∅, {1}, {2, 3}.

1 2 3

2

13

31

2

3 2 1

∅

−

+

{1}

aba

{1}

−

+

{0}

baa

{2, 3}

−

+

{1, 2}

abb

This descent statistic coincides with a statistic on réseau introduced by Bergeron, Mykytiuk, Sottile, and Willigenburg.
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The coefficients of the extended ab-index
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The Poincaré-extended ab-index

Let P be a graded poset.

Definition

The extended ab-index of P is

exΨ(P; y , a,b) =
∑

C:chain of P\{1̂}

Poin(P, C, y) wtC(a,b) .

Conjecture (Maglione-Voll)

If P is the intersection poset of an arrangement of hyperplanes, then
exΨ(P; y , 1, t) has nonnegative coefficients.

Their conjecture is true, even for exΨ(P; y , a,b), and holds for all posets
with R-labelings!
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The Poincaré-extended ab-index

Let P be a graded poset of rank n with an R-labeling λ.

Theorem ((DB)MS, 2023)

The extended ab-index of P is

exΨ(P; y , a,b) =
∑

(M,E)

y#Emon(M,E )

where the sum ranges over all pairs (M,E ) where M is a maximal chain
and E is a subset of its edges.

This immediately implies a Maglione–Voll’s conjecture.

Galen Dorpalen-Barry (Oregon) extended ab-index April 10, 2024 34 / 45



Example

Computing exΨ(L; y , a,b) using the theorem instead of the definition.

1̂

α1 α2 α3

0̂

1 2 3

2 1 1

E y#E 0̂⋖ α1 ⋖ 1̂ 0̂⋖ α2 ⋖ 1̂ 0̂⋖ α3 ⋖ 1̂

{} 1 aa ab ab
{1} y ba ba ba
{2} y ab ab ab
{1, 2} y2 bb ba ba

exΨ(L; y , a,b) = aa+ (3y + 2y2)ba+ (2 + 3y)ab+ y2bb
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The Poincaré-extended ab-index

Let P be a graded poset of rank n with an R-labeling λ.

Theorem ((DB)MS, 2023)

The extended ab-index of P is

exΨ(P; y , a,b) =
∑

(M,E)

y#Emon(M,E )

where the sum ranges over all pairs (M,E ) where M is a maximal chains
E is a subset of its edges.
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A Happy Surprise at y = 1
Unifying a Few Results from the (Ordinary) ab-index
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The (ordinary) ab-index

Definition

Let P be a graded poset. The ab-index of P is

Ψ(P; a,b) =
∑

C:chain of P\{1̂}

Poin(P, C, 0) wtC(a,b) .

1̂

α1 α2 α3

0̂

C Poin(L, C; 0) rank(C) wtC(a,b)

{} 1 {} (a− b)2

{0̂} 1 + 0 + 0 {0} b(a− b)
{αi} 1 + 0 {1} (a− b)b

{0̂ < αi} (1 + 0)2 {0, 1} b2

Ψ(L; y , a,b) = (a− b)2+b(a− b)

+3 · (a− b)b+3b2

= a2 + 2ab
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The ω-map

Definition

Let m be a monomial in a and b. Define a transformation ω that first
sends ab to ab+ yba+ yab+ y2bb, then all remaining a’s to a+ yb and
all remaining b’s to b+ ya.

If m = aabba, then

ω(m) = (a+ yb)(ab+ yba+ yab+ y2bb)(b+ ya)(a+ yb).

By extending ω linearly, we can apply this map to sums of monomials, i.e.,

ω(aa+ 2ab) = (a+ yb)(a+ yb) + 2(ab+ yba+ yab+ y2bb)

= aa+ (3y + 2y2)ba+ (3y + 2)ab+ y2bb .

You might recognize these polynomials from earlier in this talk...
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The ω-map

The ab index of the following poset is aa+ 2ab.

1̂

α1 α2 α3

0̂

1 2 3

2 1 1

We just saw that

ω(aa+ 2ab) = aa+ (3y + 2y2)ba+ (3y + 2)ab+ y2bb

=exΨ(P; y , a,b) .

This is not a coincidence!

Theorem ((DB)MS, 2023)

For an R-labeled poset P, we have exΨ(P; y , a,b) = ω(Ψ(P; a,b)).
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The ω-map

Theorem ((DB)MS, 2023)

For an R-labeled poset P, we have exΨ(P; y , a,b) = ω(Ψ(P; a,b)).

This recovers and refines and unifies several well-known results:

When P is the lattice of flats of an oriented matroid, setting y = 1
recovers the ω map of Billera-Ehrenborg-Readdy,

When P is the lattice of flats of an oriented interval greedoid, setting
y = 1 recovers the ω map of Saliola-Thomas, and

When P is a distributive lattice, setting y = r +1 recovers the ωr map
of Ehrenborg (related to the “r -Signed Birkoff poset” from Hsiao).

All three of these were proved with similar techniques, although no unified
proof was known until now!
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Take-aways

Theorem ((DB)MS, 2023)

For an R-labeled poset P, we have exΨ(P; y , a,b) = ω(Ψ(P; a,b)).

It suffices to show that

ω(mon(M, ∅)) =
∑
E

y#Emon(M,E )

for every maximal chain M.

Since the first letter of mon(M, ∅) is always an a, we can decompose
mon(M, ∅) into a product of monomials of the form ab · · ·b.
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A few Questions

There are posets not admitting R-labelings, which have nonnegative
extended ab-indexes. What is this larger class of posets?

What can we say about the coefficients of anayltic zeta functions
themselves (these can have negative coefficients, but perhaps there
are combinatorial interpretations)? What about the motivic zeta
functions of JKU?

The ω map can be reframed in terms of peaks. Setting y = 1 or
y = 0 recovers well-studied combinatorics connected to peak
enumeration and quasisymmetric functions. What can be said about
y -refined peak enumerators?
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Thank you!
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