The complexified complement of an arrangement-set pair

Galen Dorpalen-Barry

joint with Nick Proudfoot

SLMath Hot Topics Workshop: Artin Groups and Arrangements March 14, 2024

Outline

1 Setup & Motivation

2 Two Models for $M(\mathcal{A})$

- A bug-eyed model for $M(\mathcal{A})$
- The Salvetti Complex and a Nerve Lemma

3 Arrangement–Set Pairs

An Extended Example

Setup & Motivation

The first kind of complement

- A real hyperplane is an affine linear subspace of codimension 1 in V ≃ ℝ^d.
- A collection of finitely-many (distinct) hyperplanes is an **arrangement**.

The first kind of complement

- A real hyperplane is an affine linear subspace of codimension 1 in V ≃ ℝ^d.
- A collection of finitely-many (distinct) hyperplanes is an **arrangement**.
- A chamber of an arrangement is an open, connected component of

$$V\setminus \bigcup_{H\in\mathcal{A}}H$$
.

This arrangement has 6 chambers.

The first kind of complement

- A real hyperplane is an affine linear subspace of codimension 1 in V ≃ ℝ^d.
- A collection of finitely-many (distinct) hyperplanes is an **arrangement**.
- A chamber of an arrangement is an open, connected component of

$$V\setminus \bigcup_{H\in\mathcal{A}}H$$
.

This arrangement has 6 chambers.

The only "interesting" topological data is the number or connected components.

Another kind of complement

- The complexification of a real vector space V is $V^{\mathbb{C}} = V + iV$.
- If H is a hyerplane defined as the zero set of f, its complexification H^C is the zero set of

$$f^{\mathbb{C}}=f+i(f-f(0)).$$

• For a real arrangement \mathcal{A} , the **complexified complement** of \mathcal{A} is

$$M(\mathcal{A}) = V^{\mathbb{C}} \setminus \bigcup_{H \in \mathcal{A}} H^{\mathbb{C}}.$$

Example

Consider the following arrangement of two hyperplanes in $\ensuremath{\mathbb{R}}$

$$x = 0$$
 $x = 1$

The complexified complement lives in ${\mathbb C} \ ...$

Dorpalen-Barry (Oregon

Another kind of complement

Example

Consider the following arrangement of two hyperplanes in $\mathbb R$

The complexified complement is $\mathbb{C} \setminus \{z = 0, z = 1\}$ and looks like

- - 0 - - - 0 - -

The dashed line represents im(z) = 0 the two dots are the two punctures where im(z) = 0 and the real part lies on a hyperplane.

The complexified complement is topologically interesting

- The cohomology ring of M(A) has a combinatorial presentation depending only on the underyling matroid of A
 - Orlik-Brieskorn gave a combinatorial presentation of the *cohomology* of the complexified complement
 - This presentation (the Orlik–Solomon algebra) relies only on the underlying *matroid* of the arrangement
- There are combinatorial homotopy models for $M(\mathcal{A})$. Two important ones for this talk come from
 - The **Salvetti Complex** (in particular, work of Salvetti and Paris)
 - ► The Bug-eyed model Proudfoot introduced a "bug-eyed model" for M(A), and Perterson-Tosteson used it to give a geometric proof of a theorem of Hyde

Many more people in this room have studied $M(\mathcal{A})$ and proved wonderful things about it...

The complexified complement is topologically interesting

- The cohomology ring is as a combinatorial presentation depending only on the underyling matroid matroid
 - Orlik-Brieskorn gave a combinatorial presentation of the *cohomology* of the complexified complement
 - This presentation (the Orlik–Solomon algebra) relies only on the underlying *matroid* of the arrangement
- There are combinatorial homotopy models for $M(\mathcal{A})$
 - Motivated by work of Deligne, Salvetti and then Paris described a simplicial complex, and showed that this is a homotopy model for complexified complements
 - ► The Bug-eyed model Proudfoot introduced a "bug-eyed model" for M(A), and Perterson-Tosteson used it to give a geometric proof of a theorem of Hyde

Many more people in this room have studied M(A) and proved wonderful things about it.

A bug-eyed model for $M(\mathcal{A})$

A motivating example

Consider the following arrangement of one hyperplane in $\ensuremath{\mathbb{R}}$

The complexified complement is $\mathbb{C} \setminus \{z = 0\}$ and looks like

Send $x + iy \in M(\mathcal{A})$ to a line with a double point $\{+, -\}$ at zero:

$$iy \mapsto \operatorname{sign}(y)$$

 $x + iy \mapsto x$ if $x \neq 0$.

A motivating example

Consider the following arrangement of one hyperplane in $\ensuremath{\mathbb{R}}$

The complexified complement is $\mathbb{C} \setminus \{z = 0\}$ and looks like

The fibers of this map all look like copies of \mathbb{R} .

A motivating example

Let $\ensuremath{\mathbb{D}}$ denote the line with a double point.

Theorem (Proudfoot '07, First Version)

The following action of \mathbb{R} on \mathbb{C}^* realizes \mathbb{C}^* as a principle \mathbb{R} -bundle over \mathbb{D} :

$$\lambda * z = re(z) + i(e^{2\lambda}x^2 - e^{-2\lambda}y^2)$$

where $\lambda \in \mathbb{R}$, $z \in \mathbb{C}^*$, and $x + iy = \sqrt{-iz}$.

Key take-aways:

- \mathbb{C}^* is a fiber bundle over $\mathbb D$ with fibers $\mathbb R$
- \mathbb{C}^* is (weakly) homotopy equivalent to $\mathbb D$
- the real part of z is preserved under the action of \mathbb{R} , and the map to \mathbb{D}
- this extends to $(\mathbb{C}^*)^n$ and \mathbb{D}^n

Using this idea for other arrangements

Observation

When $\mathcal{A} = \{H_1, \ldots, H_n\}$ is essential, the defining equations f_i of the H_i define an embedding of $M(\mathcal{A})$ into \mathbb{C}^d via:

$$f^{\mathbb{C}} = (f_1^{\mathbb{C}}(z), \cdots, f_n^{\mathbb{C}}(z)) \in \mathbb{C}^n.$$

We'll like to define a space Z(A) that is the image of M(A) under a some maps that look like this:

Using this idea for other arrangements

On the next slide, we will describe Z(A) combinatorially, with the plan to obtain the following theorem:

Theorem (Proudfoot '07, Second Version)

 $M(\mathcal{A})$ is a fiber bundle over $Z(\mathcal{A})$, and the fibers are contractible.

Planned take-aways:

- $M(\mathcal{A})$ is (weakly) homotopy equivalent to $Z(\mathcal{A})$
- We have surjections

$$M(\mathcal{A}) \twoheadrightarrow Z(\mathcal{A}) \twoheadrightarrow V$$
.

Take one copy of V for each chamber of A and identify V_C with $V_{C'}$ along the complements of separating sets.

Example

Consider the following arrangement in \mathbb{R}^2 :

 $V_{C_1} \cap V_{C_2}$ is $\mathbb{R}^2 \setminus \{H\}$ and $V_{C_1} \cap V_{C_3}$ is $\mathbb{R}^2 \setminus \{H, H'\}$

Example

For the boolean arrangement in \mathbb{R}^2 , we have:

A point (x, y) in Z(A)corresponds to a point in (x, y), together with some extra data about the hyperplanes containing (x, y).

Example

- *H*' separates {*C*₃, *C*₄} from {*C*₁, *C*₂}
- In Z(A) there are two copies of (0, 2): the $\{C_3, C_4\}$ copy and the $\{C_1, C_2\}$ copy

Example

- *H* and *H*' separate all the chambers from one another
- In Z(A) there are four copies of (0, 0), corresponding to each of the four chambers

Example

- *H* and *H*' separate all the chambers from one another
- In Z(A) there are four copies of (0, 0), corresponding to each of the four chambers

Example

- *H* and *H*' separate all the chambers from one another
- In Z(A) there are four copies of (0, 0), corresponding to each of the four chambers

Example

- *H* and *H*' separate all the chambers from one another
- In Z(A) there are four copies of (0, 0), corresponding to each of the four chambers

Intuitively: replace all hyperplanes with "seams" corresponding to the positive and negative sides of each of the hyperplanes.

Example

- Points that lie interior to chambers are contained in all V_C
- There's only one copy of each of those
- We still draw this little arrow, but it lies completely inside the chamber

$Z(\mathcal{A})$ is (weakly) homotopy equivalent to $M(\mathcal{A})$

Now we have the following:

Theorem (Proudfoot '07, Second Version)

 $M(\mathcal{A})$ is a fiber bundle over $Z(\mathcal{A})$, and the fibers are contractible.

Note: \mathcal{A} does not need to be essential!

Key take-aways:

- $M(\mathcal{A})$ is (weakly) homotopy equivalent to $Z(\mathcal{A})$
- We have surjections

$$M(\mathcal{A}) \twoheadrightarrow Z(\mathcal{A}) \twoheadrightarrow V$$
.

Question:

Why is Z(A) natural to consider from the perspective of the Salvetti poset?

The Salvetti Complex and a Nerve Lemma

Faces of Arrangements: Some Notation

Recall that an arrangement A decomposes V into relatively open cells called **faces**, which are intersections of the hyperplanes and halfspaces of the arrangement, i.e.,

$$igcap_{H\in\mathcal{A}} H^{arepsilon_H} \qquad ext{for } arepsilon_H\in\{0,+,-\}\,.$$

Recall that an arrangement A decomposes V into relatively open cells called **faces**, which are intersections of the hyperplanes and halfspaces of the arrangement, i.e.,

$$igcap_{H\in\mathcal{A}} H^{arepsilon_{H}} \qquad ext{for } arepsilon_{H}\in\left\{0,+,-
ight\}.$$

We'll use the following notation:

- Σ(A) is the set of faces
- C(A) is the set of chambers (= top-dimensional faces).
- Σ(A) is a semigroup under ∘, where F ∘ G means "perturb F a little bit toward G" or equivalently, for each hyperplane: if ε_H is zero in F, use the choice of ε_H from G instead.

The Salvetti poset is a poset on

$$\{(F, C) \in | F \in \Sigma(\mathcal{A}), C \in \mathcal{C}(\mathcal{A}), C = F \circ C\}$$

with the relation $(F, C) \prec (F', C')$ if and only if

$$F' = F \circ F'$$
 and $C' = F' \circ C$.

Example

For the boolean arrangement in \mathbb{R}^2 , we have:

In sal(A) there are four ways to pair (0,0) with an adjacent chamber.

The Salvetti poset is a poset on

$$\{(F, C) \in | F \in \Sigma(\mathcal{A}), C \in \mathcal{C}(\mathcal{A}), C = F \circ C\}$$

with the relation $(F, C) \prec (F', C')$ if and only if

$$F' = F \circ F'$$
 and $C' = F' \circ C$.

Example

For the boolean arrangement in \mathbb{R}^2 , we have:

Moving up in the poset means sliding into a higher-dimensional face, and keeping the arrow pointed in the same direction.

The Salvetti poset is a poset on

$$\{(F, C) \in | F \in \Sigma(\mathcal{A}), C \in \mathcal{C}(\mathcal{A}), C = F \circ C\}$$

with the relation $(F, C) \prec (F', C')$ if and only if

$$F' = F \circ F'$$
 and $C' = F' \circ C$.

Example

For the boolean arrangement in \mathbb{R}^2 , we have:

Moving up in the poset means sliding into a higher-dimensional face, and keeping the arrow pointed in the same direction.

The Salvetti poset is a poset on

$$\{(F, C) \in | F \in \Sigma(\mathcal{A}), C \in \mathcal{C}(\mathcal{A}), C = F \circ C\}$$

with the relation $(F, C) \prec (F', C')$ if and only if

$$F' = F \circ F'$$
 and $C' = F' \circ C$.

By comparing these pictures with the ones we drew before, we see:

Remarkable Coincidence

The partial order on sal(A) is the containment order on connected components of intersections of V_C 's in Z(A).

The Salvetti poset is a poset on

$$\{(F, C) \in | F \in \Sigma(\mathcal{A}), C \in \mathcal{C}(\mathcal{A}), C = F \circ C\}$$

with the relation $(F, C) \prec (F', C')$ if and only if

$$F' = F \circ F'$$
 and $C' = F' \circ C$.

By comparing these pictures with the ones we drew before, we see:

Remarkable Coincidence

The partial order on sal(A) is the containment order on connected components of intersections of V_C 's in Z(A).

Want: Use a nerve lemma to say that the order complex of sal(A) is (weakly) homotopy equivalent to Z(A).

Dorpalen-Barry (Oregon

Nerve Lemmas: a Typical Setup

- X is a topological space which is homeomorphic to a CW complex
- $\mathcal{U} = \{U \subseteq X\}$ is a finite open cover of X
- Nerv $(\mathcal{U}) = \{\mathcal{V} \subseteq \mathcal{U} \mid \bigcap_{U \in \mathcal{V}} U \neq \emptyset\}$

Theorem (A Typical Nerve Lemma)

If arbitrary intersections of elements of \mathcal{U} are empty or contractible, then X is homotopy equivalent to the order complex of Nerv(\mathcal{U}) ordered by containment.

Example (Circle)

Cover the circle with three intervals

$$U_1 = (0, \pi)$$
 $U_2 = \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ $U_3 = \left(\frac{5\pi}{4}, \frac{\pi}{4}\right)$

Nerve Lemmas: a Typical Setup

Example (Circle)

Our open cover of the circle has the following poset of intersections:

Which has the following order complex:

 $Z(\mathcal{A})$ has an natural open cover:

$$\mathcal{U} = \{ V_C \mid C \in \mathcal{C}(\mathcal{A}) \}$$

Problem: arbitrary intersections are not always contractible

Solution: we need a special version of the nerve lemma

Setup:

- P: finite poset
- Op(X): is the set of open subsets of X, ordered by inclusion
- $f: P \rightarrow Op(X)$ order-preserving with f(p) contractible $\forall p \in P$
- For $x \in X$, define $P_x = \{p \in P \mid x \in f(P)\}$

We have the following generalization of the nerve lemma, due to Dugger:

Theorem

If the order complex of P_x is contractible for all $x \in X$, then X is weakly homotopy equivalent to the order complex of P.

Theorem

If the order complex of P_x is contractible for all $x \in X$, then X is weakly homotopy equivalent to the order complex of P.

How we'll use it: Define a map $f : sal(A) \to Op(X)$ by sending (F, C) to the connected component of

$$\bigcap_{C':C'=F\circ C'} V_{C'} \quad \text{containing } C.$$

Theorem

If the order complex of P_x is contractible for all $x \in X$, then X is weakly homotopy equivalent to the order complex of P.

How we'll use it: Define a map $f : sal(A) \to Op(X)$ by sending (F, C) to the connected component of

$$\bigcap_{C':C'=F\circ C'} V_{C'} \quad \text{containing } C.$$

Theorem

If the order complex of P_x is contractible for all $x \in X$, then X is weakly homotopy equivalent to the order complex of P.

How we'll use it: Define a map $f : sal(A) \to Op(X)$ by sending (F, C) to the connected component of

$$\bigcap_{C':C'=F\circ C'} V_{C'} \quad \text{containing } C.$$

Nerve Lemma in Action

Example

Back to the Boolean arrangement in \mathbb{R}^2 .

H' •× For a face F of \mathcal{A} , define $X_F = \bigcap_{C':C'=F \circ C'} V_{C'}.$ If $x \in X_F$, then lies in the right halfspace defined by H'.

If $x \in X_F$, then it lies in a unique connected component.

Nerve Lemma in Action

Example

Back to the Boolean arrangement in \mathbb{R}^2 .

If $x \in X_F$, then it lies in a unique connected component.

Observation: Contractibility of P_x is equivalent to the contractibility of the part of the face poset of A that cuts through a polyhedral cone.

By looking at the face posets of pairs $(\mathcal{A}, \mathcal{K})$, we see that sal (\mathcal{A}) and $Z(\mathcal{A})$ satisfy the conditions for Dan's Nerve lemma, and we obtain:

Theorem (DB-P 24+, First Version)

sal(A) is (weakly) homotopy equivalent to Z(A)

Comments:

- Part of this argument uses the machinery of *conditional oriented matroids*, and mildly extends work of Bandelt–Chepoi–Knauer.
- This recovers the well-known fact that $M(\mathcal{A})$ is (weakly) homotopy equvialent to sal (\mathcal{A}) .
- These arguments hold more generally.

Arrangement–Set Pairs

Arrangement-Set pairs

An arrangement-set pair is $(\mathcal{A}, \mathcal{K})$ where

- $\ \, \bullet \ \, {\cal A} \ \, {\rm is \ an \ \, arrangement \ \, in \ \, } V \cong \mathbb{R}^d$
- **2** $\mathcal{K} \subseteq V$ is an open, convex set

We will be interested in the way the arrangement \mathcal{A} subdivides \mathcal{K} .

Arrangement-Set pairs

An arrangement-set pair is $(\mathcal{A}, \mathcal{K})$ where

- $\textcircled{0} \ \mathcal{A} \text{ is an arrangement in } V \cong \mathbb{R}^d$
- 2 $\mathcal{K} \subseteq V$ is an open, convex set

We will be interested in the way the arrangement ${\mathcal A}$ subdivides ${\mathcal K}.$

Example

Some examples where specific $(\mathcal{A}, \mathcal{K})$ pairs appear in the literature:

- Braid Arrangement: "cone-preposet dictionary" of Postnikov-Reiner-Williams, chambers count linear extensions
- Catalan & Shi arrangements associated to a finite crystallographic root system: symmetries among their Weyl cones
- Alcoved polytopes: convex unions of chambers of an affine Weyl arrangement of Type A_n, the subdivision by the hyperplanes gives a triangulation

Features of a Good Answer:

- $M(\mathcal{A}, V) = M(\mathcal{A})$ and $Z(\mathcal{A}, V) = Z(\mathcal{A})$
- $M(\mathcal{A},\mathcal{K})$ and $Z(\mathcal{A},\mathcal{K})$ are (weakly) homotopy equivalent
- There is a combinatorially-defined simplicial complex, generalizing the Salvetti complex, which is homotopy equivalent to $M(\mathcal{A}, \mathcal{K})$
- The cohomology has a combinatorial presentation (similar to the presentation of the Orlik–Solomon algebra of an arrangement)

Features of a Good Answer:

- $M(\mathcal{A}, V) = M(\mathcal{A})$ and $Z(\mathcal{A}, V) = Z(\mathcal{A})$
- $M(\mathcal{A},\mathcal{K})$ and $Z(\mathcal{A},\mathcal{K})$ are (weakly) homotopy equivalent
- There is a combinatorially-defined simplicial complex, generalizing the Salvetti complex, which is homotopy equivalent to $M(\mathcal{A}, \mathcal{K})$
- The cohomology has a combinatorial presentation (similar to the presentation of the Orlik–Solomon algebra of an arrangement)

Definitions:

$$M(\mathcal{A},\mathcal{K}) = \{x + iy \in M(\mathcal{A}) \mid x \in \mathcal{K}\}$$
$$Z(\mathcal{A},\mathcal{K}) = \{x \in Z(\mathcal{A}) \mid x \in \mathcal{K}\}$$

Features of a Good Answer:

- \checkmark $M(\mathcal{A}, V) = M(\mathcal{A})$ and $Z(\mathcal{A}, V) = Z(\mathcal{A})$
 - $M(\mathcal{A},\mathcal{K})$ and $Z(\mathcal{A},\mathcal{K})$ are (weakly) homotopy equivalent
 - There is a combinatorially-defined simplicial complex, generalizing the Salvetti complex, which is homotopy equivalent to $M(\mathcal{A}, \mathcal{K})$
 - The cohomology has a combinatorial presentation (similar to the presentation of the Orlik–Solomon algebra of an arrangement)

Definitions:

$$M(\mathcal{A},\mathcal{K}) = \{x + iy \in M(\mathcal{A}) \mid x \in \mathcal{K}\}$$
$$Z(\mathcal{A},\mathcal{K}) = \{x \in Z(\mathcal{A}) \mid x \in \mathcal{K}\}$$

Weak homotopy equivalence for $M(\mathcal{A}, \mathcal{K})$ and $Z(\mathcal{A}, \mathcal{K})$

Recall the surjections from earlier

$$M(\mathcal{A}) \twoheadrightarrow Z(\mathcal{A}) \twoheadrightarrow V$$
.

Restricting to \mathcal{K} gives

$$M(\mathcal{A},\mathcal{K}) \twoheadrightarrow Z(\mathcal{A},\mathcal{K}) \twoheadrightarrow \mathcal{K}$$
.

Weak homotopy equivalence for $M(\mathcal{A}, \mathcal{K})$ and $Z(\mathcal{A}, \mathcal{K})$

Recall the surjections from earlier

$$M(\mathcal{A}) \twoheadrightarrow Z(\mathcal{A}) \twoheadrightarrow V$$
.

Restricting to \mathcal{K} gives

$$M(\mathcal{A},\mathcal{K}) \twoheadrightarrow Z(\mathcal{A},\mathcal{K}) \twoheadrightarrow \mathcal{K}$$
.

The first map is a restriction of a fiber bundle to subset, so it is again a fiber bundle. Using the results from before gives:

Proposition

 $M(\mathcal{A},\mathcal{K})$ and $Z(\mathcal{A},\mathcal{K})$ are weakly homotopy equivalent.

Features of a Good Answer:

$$\checkmark$$
 $M(\mathcal{A}, V) = M(\mathcal{A})$ and $Z(\mathcal{A}, V) = Z(\mathcal{A})$

- \checkmark $M(\mathcal{A},\mathcal{K})$ and $Z(\mathcal{A},\mathcal{K})$ are (weakly) homotopy equivalent
 - There is a combinatorially-defined simplicial complex, generalizing the Salvetti complex, which is homotopy equivalent to $M(\mathcal{A}, \mathcal{K})$
 - The cohomology has a combinatorial presentation (similar to the presentation of the Orlik–Solomon algebra of an arrangement)

Definitions:

$$M(\mathcal{A},\mathcal{K}) = \{x + iy \in M(\mathcal{A}) \mid x \in \mathcal{K}\}$$
$$Z(\mathcal{A},\mathcal{K}) = \{x \in Z(\mathcal{A}) \mid x \in \mathcal{K}\}$$

Features of a Good Answer:

- \checkmark $M(\mathcal{A}, V) = M(\mathcal{A})$ and $Z(\mathcal{A}, V) = Z(\mathcal{A})$
- \checkmark $M(\mathcal{A},\mathcal{K})$ and $Z(\mathcal{A},\mathcal{K})$ are (weakly) homotopy equivalent
- ✓ There is a combinatorially-defined simplicial complex, generalizing the Salvetti complex, which is homotopy equivalent to M(A, K)
 - The cohomology has a combinatorial presentation (similar to the presentation of the Orlik–Solomon algebra of an arrangement)

Definitions:

$$M(\mathcal{A},\mathcal{K}) = \{x + iy \in M(\mathcal{A}) \mid x \in \mathcal{K}\}$$
$$Z(\mathcal{A},\mathcal{K}) = \{x \in Z(\mathcal{A}) \mid x \in \mathcal{K}\}$$
$$\mathsf{sal}(\mathcal{A},\mathcal{K}) = \{(F,C) \in \mathsf{sal}(\mathcal{A}) \mid F \cap \mathcal{K} \neq \emptyset, C \cap \mathcal{K} \neq \emptyset\}$$

Theorem (DB-P 24+, Second Version)

 $\mathsf{sal}(\mathcal{A},\mathcal{K})$ is (weakly) homotopy equivalent to $Z(\mathcal{A},\mathcal{K})$

Dorpalen-Barry (Oregon

Features of a Good Answer:

$$\checkmark$$
 $M(\mathcal{A}, V) = M(\mathcal{A})$ and $Z(\mathcal{A}, V) = Z(\mathcal{A})$

- \checkmark $M(\mathcal{A},\mathcal{K})$ and $Z(\mathcal{A},\mathcal{K})$ are (weakly) homotopy equivalent
- \checkmark There is a combinatorially-defined simplicial complex, generalizing the Salvetti complex, which is homotopy equivalent to $M(\mathcal{A}, \mathcal{K})$
 - The cohomology has a combinatorial presentation (similar to the presentation of the Orlik–Solomon algebra of an arrangement)

Definitions:

$$M(\mathcal{A},\mathcal{K}) = \{x + iy \in M(\mathcal{A}) \mid x \in \mathcal{K}\}$$
$$Z(\mathcal{A},\mathcal{K}) = \{x \in Z(\mathcal{A}) \mid x \in \mathcal{K}\}$$
$$\mathsf{sal}(\mathcal{A},\mathcal{K}) = \{(F,C) \in \mathsf{sal}(\mathcal{A}) \mid F \cap \mathcal{K} \neq \emptyset, C \cap \mathcal{K} \neq \emptyset\}$$

The last bullet is a topic for another talk.

Dorpalen-Barry (Oregon)

Consider the following arrangement of two hyperplanes in \mathbb{R} with three chambers A, B, and C:

The complexified complement $M(\mathcal{A})$ is:

The Salvetti poset sal(A) is:

The order complex of sal(A) and Z(A) are:

The image sal(A) in Op(Z(A)) is

where the open top row of open sets are

The image sal(A) in Op(Z(A)) is

and the bottom row of open sets are

Dorpalen-Barry (Oregon)

Thank you for listening! Questions? Compliments?